The Einstein–Cartan–Saa theory of torsion modifies the spacetime volume element so that it is compatible with the connection. The condition of connection compatibility gives constraints on torsion, which are also necessary for the consistence of torsion, minimal coupling, and electromagnetic gauge invariance. To solve the problem of positivity of energy associated with the torsionic scalar, we reformulate this theory in the Einstein conformal frame. In the presence of the electromagnetic field, we obtain the Hojman–Rosenbaum–Ryan–Shepley theory of propagating torsion with a different factor in the torsionic kinetic term.
REFERENCES
1.
V.
de Sabbata
and M.
Gasperini
, Introduction to Gravitation
(World Scientific
, Singapore, 1986
).2.
F. W.
Hehl
, P.
von der Heyde
, G. D.
Kerlick
, and J. M.
Nester
, Rev. Mod. Phys.
48
, 393
(1976
).3.
S.
Hojman
, M.
Rosenbaum
, M. P.
Ryan
, and L. C.
Shepley
, Phys. Rev. D
17
, 3141
(1978
).4.
S.
Hojman
, M.
Rosenbaum
, and M. P.
Ryan
, Jr., Phys. Rev. D
19
, 430
(1979
).5.
V.
De Sabbata
and M.
Gasperini
, Phys. Rev. D
23
, 2116
(1981
).6.
A.
Saa
, Gen. Relativ. Gravit.
29
, 205
(1997
).7.
R.
McKellar
, Phys. Rev. D
20
, 356
(1979
).8.
R. T.
Hammond
, Class. Quantum Grav.
6
, L195
(1989
).9.
R. T.
Hammond
, Class. Quantum Grav.
7
, 2107
(1990
).10.
L. D.
Landau
and E. M.
Lifshitz
, The Classical Theory of Fields
(Pergamon
, Oxford, 1975
).11.
12.
13.
V. D.
Sandberg
, Phys. Rev. D
12
, 3013
(1975
).14.
15.
R. A.
Mosna
and A.
Saa
, J. Math. Phys.
46
, 112502
(2005
).16.
A.
Saa
, Mod. Phys. Lett. A
8
, 2565
(1993
).17.
C.
Mukku
and W. A.
Sayed
, Phys. Lett. B
82
, 382
(1979
).18.
G.
Magnano
and L. M.
Sokołowski
, Phys. Rev. D
50
, 5039
(1994
).19.
20.
V.
Faraoni
and E.
Gunzig
, Int. J. Theor. Phys.
38
, 217
(1999
).21.
A.
Saa
, Mod. Phys. Lett. A
9
, 971
(1994
).22.
C.
Brans
and R. H.
Dicke
, Phys. Rev.
124
, 925
(1961
).23.
R. H.
Dicke
, Phys. Rev.
125
, 2163
(1962
).24.
25.
M.
Gasperini
, Gen. Relativ. Gravit.
16
, 1031
(1984
).26.
W. T.
Ni
, Phys. Rev. D
19
, 2260
(1979
).© 2006 American Institute of Physics.
2006
American Institute of Physics
You do not currently have access to this content.