Quantum field theory is the traditional solution to the problems inherent in melding quantum mechanics with special relativity. However, it has also long been known that an alternative first-quantized formulation can be given for relativistic quantum mechanics, based on the parametrized paths of particles in spacetime. Because time is treated similarly to the three space coordinates, rather than as an evolution parameter, such a spacetime approach has proved particularly useful in the study of quantum gravity and cosmology. This paper shows how a spacetime path formalism can be considered to arise naturally from the fundamental principles of the Born probability rule, superposition, and Poincaré invariance. The resulting formalism can be seen as a foundation for a number of previous parametrized approaches in the literature, relating, in particular, “off-shell” theories to traditional on-shell quantum field theory. It reproduces the results of perturbative quantum field theory for free and interacting particles, but provides intriguing possibilities for a natural program for regularization and renormalization. Further, an important consequence of the formalism is that a clear probabilistic interpretation can be maintained throughout, with a natural reduction to nonrelativistic quantum mechanics.

1.
R. P.
Feynman
,
Rev. Mod. Phys.
20
,
367
(
1948
).
2.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
, New York,
1965
).
3.
R. P.
Feynman
,
Phys. Rev.
76
,
749
(
1949
).
4.
R. P.
Feynman
,
Phys. Rev.
80
,
440
(
1950
).
5.
R. P.
Feynman
,
Phys. Rev.
84
,
108
(
1951
).
6.
E. C. G.
Stueckelberg
,
Helv. Phys. Acta
14
,
588
(
1941
).
7.
E. C. G.
Stueckelberg
,
Helv. Phys. Acta
15
,
23
(
1942
).
8.
V. A.
Fock
,
Phys. Z. Sowjetunion
12
,
404
(
1937
).
9.
Y.
Nambu
,
Prog. Theor. Phys.
5
,
82
(
1950
).
10.
11.
12.
L. P.
Horwitz
and
C.
Piron
,
Helv. Phys. Acta
46
,
316
(
1973
).
13.
R. E.
Collins
and
J. R.
Fanchi
,
Nuovo Cimento Soc. Ital. Fis., A
48A
,
314
(
1978
).
14.
C.
Piron
and
F.
Reuse
,
Helv. Phys. Acta
51
,
146
(
1978
).
15.
J. R.
Fanchi
and
R. E.
Collins
,
Found. Phys.
8
,
851
(
1978
).
16.
J. R.
Fanchi
and
W. J.
Wilson
,
Found. Phys.
13
,
571
(
1983
).
17.
18.
J. R.
Fanchi
,
Parametrized Relativistic Quantum Theory
(
Kluwer Academic
, Dordrecht,
1993
).
19.
J. B.
Hartle
, in
Gravitation and Quantizations: Proceedings of the 1992 Les Houches Summer School
, edited by
B.
Julia
and
J.
Zinn-Justin
(
North Holland
, Amsterdam,
1995
);
J. B.
Hartle
, gr-qc/9304006.
20.
J. B.
Hartle
and
S. W.
Hawking
,
Phys. Rev. D
28
,
2960
(
1983
).
21.
C.
Teitelboim
,
Phys. Rev. D
25
,
3159
(
1982
).
22.
J. J.
Halliwell
,
Phys. Rev. D
64
,
044008
(
2001
).
23.
J. J.
Halliwell
and
J.
Thorwart
,
Phys. Rev. D
64
,
124018
(
2001
).
24.
J. J.
Halliwell
and
J.
Thorwart
,
Phys. Rev. D
65
,
104009
(
2002
).
25.
J. B.
Hartle
and
K. V.
Kuchař
,
Phys. Rev. D
34
,
2323
(
1986
).
C.
Schubert
, hep-th/0101036.
27.
Z.
Bern
and
D. A.
Kosower
,
Phys. Rev. D
38
,
1888
(
1988
).
28.
Z.
Bern
and
D. A.
Kosower
,
Phys. Rev. Lett.
66
,
1669
(
1991
).
29.
Z.
Bern
and
D. A.
Kosower
,
Nucl. Phys. B
379
,
451
(
1992
);
Z.
Bern
and
D. A.
Kosower
,
Nucl. Phys. B
379
,
562
(
1992
).
30.
M. J.
Strassler
,
Nucl. Phys. B
385
,
145
(
1992
).
31.
M. G.
Schmidt
and
C.
Schubert
,
Phys. Lett. B
318
,
438
(
1993
).
32.
M. G.
Schmidt
and
C.
Schubert
,
Phys. Lett. B
331
,
69
(
1994
).
33.
L. P.
Horwitz
and
Y.
Lavie
,
Phys. Rev. D
26
,
819
(
1982
).
34.
L. P.
Horwitz
,
C.
Piron
, and
F.
Reuse
,
Helv. Phys. Acta
48
,
546
(
1975
).
35.
L. P.
Horwitz
, hep-ph/9606330.
36.
J. R.
Fanchi
,
Phys. Rev. A
34
,
1677
(
1986
).
37.
J.
Frastai
and
L. P.
Horwitz
,
Found. Phys.
25
,
1485
(
1995
).
38.
M. C.
Land
and
L. P.
Horwitz
,
Found. Phys.
21
,
299
(
1991
).
39.
H.
Enatsu
,
Prog. Theor. Phys.
30
,
236
(
1963
).
40.
H.
Enatsu
,
Nuovo Cimento Soc. Ital. Fis., A
95A
,
269
(
1986
).
41.
L. P.
Horwitz
and
F.
Rohrlich
,
Phys. Rev. D
24
,
1528
(
1981
).
42.
S.
Weinberg
,
The Quantum Theory of Fields, Vol. 1. Foundations
(
Cambridge University Press
, Cambridge,
1995
).
43.
J. B.
Hartle
and
D.
Marolf
,
Phys. Rev. D
56
,
6247
(
1997
).
44.
D.
Giulini
and
D.
Marolf
,
Class. Quantum Grav.
16
,
2479
(
1999
).
45.
N. I.
Akhiezer
and
I. M.
Glazman
,
Theory of Linear Operators in Hilbert Space
(
Pitman
, London,
1981
), translated by E. R. Dawson from Teoriya Lineĭnykh Operatorov V Gilbertovom Prostranstve, 1978.
46.
W. M.D.
Muynck
,
Foundations of Quantum Mechanics, an Empericist Approach
(
Kluwer Academic
, Dordrecht,
2002
).
47.
T. D.
Newton
and
E. P.
Wigner
,
Rev. Mod. Phys.
21
,
400
(
1949
).
48.
L. L.
Foldy
and
S. A.
Wouthuysen
,
Phys. Rev.
78
,
29
(
1950
).
49.
50.
M. B.
Green
,
J. H.
Schwarz
, and
E.
Witten
,
Superstring Theory
(
Cambridge University Press
, Cambridge,
1987
).
51.
R.
Ticciati
,
Quantum Field Theory for Mathematicians
(
Cambridge University Press
, Cambridge,
1999
).
52.
A. O.
Barut
and
I. H.
Duru
,
Phys. Rep.
172
,
1
(
1989
).
53.
H.
Lehmann
,
K.
Symanzik
, and
W.
Zimmerman
,
Nuovo Cimento
1
,
205
(
1955
).
54.
M. C.
Land
,
Found. Phys.
27
,
19
(
1997
);
M. C.
Land
, hep-th/9701159.
55.
M. C.
Land
,
Found. Phys.
33
,
1157
(
2003
);
M. C.
Land
, hep-th/0603074.
56.
W.
Pauli
and
F.
Villars
,
Rev. Mod. Phys.
21
,
434
(
1949
).
57.
58.
N.
Shnerb
and
L. P.
Horwitz
,
Phys. Rev. A
48
,
4068
(
1993
).
59.
M. C.
Land
,
Found. Phys.
28
,
1499
(
1998
).
60.
F.
Bordi
and
R.
Casalbuoni
,
Phys. Lett.
93B
,
308
(
1980
).
61.
M.
Henneaux
and
C.
Teitelboim
,
Ann. Phys.
143
,
127
(
1982
).
62.
A. O.
Barut
and
I. H.
Duru
,
Phys. Rev. Lett.
53
,
2355
(
1984
).
63.
S.
Forte
, hep-th/0507291.
64.
P. D.
Mannheim
,
Phys. Rev. D
32
,
898
(
1985
).
65.
M.
Gell-Mann
and
J.
Hartle
, in
Complexity, Entropy and the Physics of Information
, Sante Fe Institute Studies in the Science of Complexity Vol.
VIII
, edited by
W.
Zurek
(
Addison-Wesley
, Reading,
1990
).
66.
R. B.
Griffiths
,
J. Stat. Phys.
36
,
219
(
1984
).
67.
R.
Omnès
,
J. Stat. Phys.
53
,
893
(
1988
).
68.
R.
Omnès
,
The Interpretation of Quantum Mechanics
(
Princeton University Press
, Princeton,
1994
).
69.
R. B.
Griffiths
,
Consistent Quantum Mechanics
(
Cambridge University Press
, Cambridge,
2002
).
70.
J. B.
Hartle
, in
Quantum Cosmology and Baby Universes: Proceedings of the 1989 Jerusalem Winter School for Theoretical Physics
, edited by
S.
Coleman
,
J.
Hartle
,
T.
Piran
, and
S.
Weinberg
(
World Scientific
, Singapore,
1991
).
71.
J. B.
Hartle
,
Vistas Astron.
37
,
569
(
1993
);
J. B.
Hartle
, gr-qc/9210004.
72.
J. B.
Hartle
,
Phys. Rev. D
44
,
3173
(
1991
).
73.
E.
Seidewitz
, presented at the 2006 Meeting of the International Association for Relativistic Dynamics, 2006.
74.
J. J.
Halliwell
,
Contemp. Phys.
46
,
93
(
2004
).
You do not currently have access to this content.