We study point symmetries of the Robinson-Trautman equation. The cases of one- and two-dimensional algebras of infinitesimal symmetries are discussed in detail. The corresponding symmetry reductions of the equation are given. Higher dimensional symmetries are shortly discussed. It turns out that all known exact solutions of the Robinson-Trautman equation are symmetric.

1.
I.
Robinson
and
A.
Trautman
, “
Spherical gravitational waves
,”
Phys. Rev. Lett.
4
,
431
(
1960
).
2.
O.
Moreschi
,
A.
Perez
, and
L.
Lehner
, “
Energy and angular momentum radiated for non head-on binary black hole collisions
,”
Phys. Rev. D
66
,
104017
(
2002
).
3.
W.
Kinnersley
, “
Field of an arbitrarily accelerating point mass
,”
Phys. Rev.
186
,
1335
(
1969
).
4.
M.
Demiański
and
J. F.
Plebański
, “
Rotating, charged and uniformly accelerating mass in general relativity
,”
Ann. Phys.
98
,
98
(
1976
).
5.
V.
Pravda
and
A.
Pravdová
, “
Boost-rotation symmetric vacuum spacetimes with spinning sources
,”
J. Math. Phys.
43
,
1536
(
2002
).
6.
V.
Pravda
and
A.
Pravdová
, “
Boost-rotation symmetric spacetimes—review
,”
Czech. J. Phys.
50
,
333
(
2000
).
7.
V.
Pravda
and
A.
Pravdová
, “
On the spinning C-metric
,”
Gravitation: Following the Prague Inspiration
(Selected essays in honour of J. Bičák), edited by
O.
Semerak
,
J.
Podolský
, and
M.
Zofka
(
World Scientific
, Singapore,
2002
).
8.
J.
Bičák
and
V.
Pravda
, “
Spinning C-metric: a spacetime with accelerating, rotating black holes
,”
Phys. Rev. D
40
,
1827
(
1989
).
9.
H.
Stephani
,
D.
Kramer
,
M.
MacCallum
,
C.
Hoenselaers
, and
E.
Herlt
,
Exact Solutions to Einstein’s Field Equations
, 2nd ed. (
Cambridge University Press
, Cambridge,
2003
).
10.
A.
Rendall
, “
Existence and asymptotic properties of global solutions of Robinson-Trautman equation
,”
Class. Quantum Grav.
5
,
1339
(
1988
).
11.
D.
Singleton
, “
On global existence and convergence of vacuum Robinson-Trautman solutions
,”
Class. Quantum Grav.
7
,
1333
(
1990
).
12.
P. T.
Chruściel
, “
On the global structure of Robinson-Trautman space-times
,”
Proc. R. Soc. London, Ser. A
436
,
299
(
1992
).
13.
J.
Foster
and
E. T.
Newman
, “
Note on the Robinson-Trautman solutions
,”
J. Math. Phys.
8
,
189
(
1966
).
14.
S.
Frittelli
and
O. M.
Moreschi
, “
Study of the Robinson-Trautman metrics in the asymptotic future
,”
Gen. Relativ. Gravit.
24
,
575
(
1992
).
15.
H.
Bondi
, “
Gravitational waves in general relativity
,”
Nature (London)
186
,
535
(
1960
).
16.
H.
Bondi
,
M. G. J.
van der Burg
, and
A. W. K.
Metzner
, “
Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems
,”
Proc. R. Soc. London, Ser. A
A269
,
21
(
1962
).
17.
P.
Tod
, “
Some examples of Penrose’s quasi local mass construction
,”
Proc. R. Soc. London, Ser. A
A388
,
457
(
1983
).
18.
J.
Tafel
, “
Bondi mass in terms of the Penrose conformal factor
,”
Class. Quantum Grav.
17
,
4397
(
2000
).
19.
F. H. J.
Cornish
and
B.
Micklewright
, “
The news function for Robinson-Trautman radiating metrics
,”
Class. Quantum Grav.
16
,
611
(
1999
).
20.
I.
Robinson
and
A.
Trautman
, “
Some spherical gravitational waves in general relativity
,”
Proc. R. Soc. London, Ser. A
A265
,
463
(
1962
).
You do not currently have access to this content.