We evaluate the ideas of Π-stability at the Landau-Ginzburg (LG) point in moduli space of compact Calabi-Yau manifolds, using matrix factorizations to B-model the topological D-brane category. The standard requirement of unitarity at the IR fixed point is argued to lead to a notion of “R-stability” for matrix factorizations of quasihomogeneous LG potentials. The D0-brane on the quintic at the Landau-Ginzburg point is not obviously unstable. Aiming to relate R-stability to a moduli space problem, we then study the action of the gauge group of similarity transformations on matrix factorizations. We define a naive moment maplike flow on the gauge orbits and use it to study boundary flows in several examples. Gauge transformations of nonzero degree play an interesting role for brane-antibrane annihilation. We also give a careful exposition of the grading of the Landau-Ginzburg category of B-branes, and prove an index theorem for matrix factorizations.

1.
M. R.
Douglas
,
B.
Fiol
, and
C.
Romelsberger
, hep-th∕0002037.
2.
M. R.
Douglas
,
J. Math. Phys.
42
,
2818
(
2001
).
3.
P. S.
Aspinwall
and
A. E.
Lawrence
,
J. High Energy Phys.
0108
,
004
(
2001
).
4.
P. S.
Aspinwall
and
M. R.
Douglas
,
J. High Energy Phys.
0205
,
031
(
2002
).
5.
T.
Bridgeland
, math.ag/0212237.
6.
P. S.
Aspinwall
, “
D-branes on Calabi-Yau manifolds
,” Talk given at Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2003): Recent Trends in String Theory, Boulder, Colorado, 1–27 June
2003
.
7.
W.
Lerche
,
C.
Vafa
, and
N. P.
Warner
,
Nucl. Phys. B
324
,
427
(
1989
).
8.
J.
Fuchs
,
C.
Schweigert
, and
J.
Walcher
,
Nucl. Phys. B
588
,
110
(
2000
).
9.
M.
Kontsevich
, “
Homological algebra of mirror symmetry
,”
Proceedings of ICM, Zürich, 1994
(
Birkhäuser
, Boston,
1995
), Vols.
1, 2
, pp.
120
139
.
10.
P. S.
Aspinwall
, “
D-branes, Pi-stability and Theta-stability
,” Lectures given at AMS-IMS-SIAM Summer Research Conference on String Geometry, Snowbird, Utah, 5–11 Jun (
2004
).
11.
A. D.
King
,
Q. J. Math.
45
,
515
(
1994
).
12.
K.
Hori
and
J.
Walcher
, “
F-term equations near Gepner points
,”
J. High Energy Phys.
0501
,
008
(
2005
).
13.
K.
Hori
and
J.
Walcher
, “
D-branes from matrix factorizations
,”
C. R. Phys.
5
,
1061
(
2004
).
14.
D.
Eisenbud
,
Trans. Am. Math. Soc.
260
,
35
(
1980
).
15.
Y.
Yoshino
,
Cohen-Macaulay Modules over Cohen-Macaulay Rings
(
Cambridge University Press
, Cambridge,
1990
).
16.
W.
Bruns
and
J.
Herzog
,
Cohen-Macaulay Rings
(
Cambridge University Press
, Cambridge,
1993
).
17.
M.
Kontsevich
(unpublished), as cited in Ref. 30.
18.
A. I.
Bondal
and
M. M.
Kapranov
,
Mat. Sb.
181
,
669
(
1990
);
A. I.
Bondal
and
M. M.
Kapranov
, translation in
Math. USSR. Sb.
70
,
93
(
1991
).
19.
D. O.
Orlov
,
Tr. Mat. Inst. Steklova
246
(
2004
),
D. O.
Orlov
Algebr. Geom. Metody
, Svyazi i Prilozh.,
240
262
;
D. O.
Orlov
translation in
Proc. Steklov Inst. Math.
246
,
227
238
(
2004
).
20.
C.
Vafa
,
Mod. Phys. Lett. A
4
,
1169
(
1989
).
21.
B. R.
Greene
,
C.
Vafa
, and
N. P.
Warner
,
Nucl. Phys. B
324
,
371
(
1989
).
23.
K.
Hori
 et al.,
Mirror Symmetry, Clay Mathematics Monographs
(
American Mathematical Society
, Providence, RI,
2003
), Vol.
1
.
24.
25.
S.
Govindarajan
,
T.
Jayaraman
, and
T.
Sarkar
,
Nucl. Phys. B
580
,
519
(
2000
).
26.
K.
Hori
,
A.
Iqbal
, and
C.
Vafa
, hep-th∕0005247.
27.
K.
Hori
, hep-th∕0012179.
28.
S.
Hellerman
,
S.
Kachru
,
A. E.
Lawrence
, and
J.
McGreevy
,
J. High Energy Phys.
0207
,
002
(
2002
).
29.
K.
Hori
, hep-th∕0207068.
30.
A.
Kapustin
and
Y.
Li
,
J. High Energy Phys.
0312
,
005
(
2003
).
31.
I.
Brunner
,
M.
Herbst
,
W.
Lerche
, and
B.
Scheuner
, hep-th∕0305133.
32.
A.
Kapustin
and
Y.
Li
, “
Topological correlators in Landau-Ginzburg models with boundaries
,”
Adv. Theor. Math. Phys.
7
,
727
(
2004
).
33.
A.
Kapustin
and
Y.
Li
, “
D-branes in topological minimal models: The Landau-Ginzburg approach
,”
J. High Energy Phys.
0407
,
045
(
2004
).
34.
C. I.
Lazaroiu
, “
On the boundary coupling of topological Landau-Ginzburg models
,”
J. High Energy Phys.
0505
,
037
(
2005
).
35.
S. K.
Ashok
,
E.
Dell’Aquila
, and
D. E.
Diaconescu
, hep-th∕0401135.
36.
K.
Hori
, hep-th∕0401139.
37.
M.
Herbst
,
C. I.
Lazaroiu
, and
W.
Lerche
, “
Superpotentials, A(infinity) relations and WDVV equations for open topological strings
,”
J. High Energy Phys.
0502
,
071
(
2005
).
38.
S. K.
Ashok
,
E.
Dell’Aquila
,
D.-E.
Diaconescu
, and
B.
Florea
, hep-th∕0404167.
39.
M.
Herbst
and
C. I.
Lazaroiu
, “
Localization and traces in open-closed toplogical Landau-Ginzburg models
,”
J. High Energy Phys.
0505
,
044
(
2005
).
40.
M.
Khovanov
and
L.
Rozansky
, hep-th∕0404189.
41.
M.
Herbst
,
C. I.
Lazaroiu
, and
W.
Lerche
, “
D-brane effective action and tachyon condensation in topological minimal models
,”
J. High Energy Phys.
0503
,
078
(
2005
).
42.
I.
Brunner
,
M.
Herbst
,
W.
Lerche
, and
J.
Walcher
, hep-th∕0408243.
43.
S.
Gukov
,
A.
Schwarz
, and
C.
Vafa
, hep-th∕0412243.
44.
P.
Seidel
,
Bull. Soc. Math. France
128
,
103
(
2000
).
45.
K.
Intriligator
and
B.
Wecht
,
Nucl. Phys. B
667
,
183
(
2003
).
46.
R.
Laza
,
G.
Pfister
, and
D.
Popescu
,
J. Algebra
253
,
209
(
2002
).
47.
I.
Brunner
,
M. R.
Douglas
,
A. E.
Lawrence
, and
C.
Romelsberger
,
J. High Energy Phys.
0008
,
015
(
2000
).
48.
C.
Vafa
,
Mod. Phys. Lett. A
6
,
337
(
1991
).
49.
C. I.
Lazaroiu
,
Nucl. Phys. B
603
,
497
(
2001
).
50.
G.
Moore
and
G.
Segal
(unpublished); see also lectures by
G.
Moore
at
KITP Duality Workshop 2001
, http:∕∕online.kitp.ucsb.edu∕online∕mp01
52.
A.
Recknagel
and
V.
Schomerus
,
Nucl. Phys. B
531
,
185
(
1998
).
53.
I.
Brunner
and
V.
Schomerus
,
J. High Energy Phys.
0004
,
020
(
2000
).
54.
J.
Fuchs
,
P.
Kaste
,
W.
Lerche
,
C. A.
Lutken
,
C.
Schweigert
, and
J.
Walcher
,
Nucl. Phys. B
598
,
57
(
2001
).
55.
J. M.
Maldacena
,
G. W.
Moore
, and
N.
Seiberg
,
J. High Energy Phys.
0107
,
046
(
2001
).
56.
R. P.
Thomas
,
Symplectic Geometry and Mirror Symmetry (Seoul, 2000)
(
World Scientific
, River Edge, NJ,
2001
), pp.
467
498
.
57.
R. P.
Thomas
and
S.-T.
Yau
,
Commun. Anal. Geom.
10
,
1075
(
2002
).
58.
D.
Mumford
,
J.
Fogarty
, and
F.
Kirwan
,
Geometric Invariant Theory
, 3rd ed. (
Springer
, Berlin,
1994
).
59.
A.
Cappelli
,
G.
D’Appollonio
, and
M.
Zabzine
,
J. High Energy Phys.
0404
,
010
(
2004
).
60.
A.
Schappert
, “
A characterisation of strictly unimodular plane curve singularities
,”
Singularities, Representation of Algebras, and Vector Bundles (Lambrecht, 1985)
,
Lect. Notes Math. 1273
(
Springer
, Berlin,
1987
), pp.
168
177
.
61.
V. I.
Arnold
,
S. M.
Gusein-Zade
, and
A. N.
Varchenko
,
Singularities of Differentiable Maps
(
Birkäuser
, Boston,
1988
), Vol.
II
.
You do not currently have access to this content.