We propose an extended set of differential operators for local mirror symmetry. If X is Calabi-Yau such that dimH4(X,Z)=0, then we show that our operators fully describe mirror symmetry. In the process, a conjecture for intersection theory for such X is uncovered. We also find operators on several examples of type X=KS through similar techniques. In addition, open string Picard-Fuchs systems are considered.

1.
Aganagic
,
M.
and
Vafa
,
C.
, hep-th∕0012041.
2.
Cachazo
,
F.
,
Intriligator
,
K.
, and
Vafa
,
C.
, “
A large N duality via a geometric transition
,”
Nucl. Phys. B
603
,
3
41
(
2001
).
3.
Chiang
,
T.-M.
,
Klemm
,
A.
,
Yau
,
S.-T.
, and
Zaslow
,
E.
, “
Local mirror symmetry: calculations and interpretations
,”
Adv. Theor. Math. Phys.
3
,
495
565
(
1999
).
4.
Cox
,
D.
and
Katz
,
S.
,
Mirror Symmetry and Algebraic Geometry
,
Mathematical Surveys and Monographs
,
68
(
American Mathematical Society
, Providence, RI,
1999
).
5.
Diaconescu
,
D.-E.
,
Florea
,
B.
, and
Grassi
,
A.
, “
Geometric transitions and open string instantons
,”
Adv. Theor. Math. Phys.
6
,
619
642
(
2003
).
6.
Forbes
,
B.
, hep-th∕0307167.
7.
Gopakumar
,
R.
and
Vafa
,
C.
, “
On the gauge theory geometry correspondence
,”
Adv. Theor. Math. Phys.
3
,
1415
1443
(
1999
).
8.
Guest
,
M. A.
, math.DG∕0206212.
9.
Hori
,
K.
and
Vafa
,
C.
, hep-th∕0002222.
10.
Hosono
,
S.
, hep-th∕0404043.
11.
Iqbal
,
A.
and
Kashani-Poor
,
A.-K.
, hep-th∕0410174.
12.
Jinzenji
,
M.
and
Naka
,
M.
(unpublished).
13.
Katz
,
S.
,
Klemm
,
A.
, and
Vafa
,
C.
, “
Geometric engineering of quantum field theories
,”
Nucl. Phys. B
497
,
173
195
(
1997
).
14.
Lerche
,
W.
and
Mayr
,
P.
, hep-th∕0111113.
15.
Lerche
,
W.
,
Mayr
,
P.
, and
Warner
,
N.
, hep-th∕0208039.
16.
Li
,
J.
,
Liu
,
C.-C.
,
Liu
,
K.
, and
Zhou
,
J.
, math.AG∕0408426.
17.
Witten
,
E.
, “
Phases of N=2 theories in two dimensions
,”
Nucl. Phys. B
403
,
159
222
(
1993
).
You do not currently have access to this content.