We propose an extended set of differential operators for local mirror symmetry. If is Calabi-Yau such that , then we show that our operators fully describe mirror symmetry. In the process, a conjecture for intersection theory for such is uncovered. We also find operators on several examples of type through similar techniques. In addition, open string Picard-Fuchs systems are considered.
REFERENCES
1.
2.
Cachazo
, F.
, Intriligator
, K.
, and Vafa
, C.
, “A large N duality via a geometric transition
,” Nucl. Phys. B
603
, 3
–41
(2001
).3.
Chiang
, T.-M.
, Klemm
, A.
, Yau
, S.-T.
, and Zaslow
, E.
, “Local mirror symmetry: calculations and interpretations
,” Adv. Theor. Math. Phys.
3
, 495
–565
(1999
).4.
Cox
, D.
and Katz
, S.
, Mirror Symmetry and Algebraic Geometry
, Mathematical Surveys and Monographs
, 68
(American Mathematical Society
, Providence, RI, 1999
).5.
Diaconescu
, D.-E.
, Florea
, B.
, and Grassi
, A.
, “Geometric transitions and open string instantons
,” Adv. Theor. Math. Phys.
6
, 619
–642
(2003
).6.
Forbes
, B.
, hep-th∕0307167.7.
Gopakumar
, R.
and Vafa
, C.
, “On the gauge theory geometry correspondence
,” Adv. Theor. Math. Phys.
3
, 1415
–1443
(1999
).8.
Guest
, M. A.
, math.DG∕0206212.9.
10.
Hosono
, S.
, hep-th∕0404043.11.
12.
Jinzenji
, M.
and Naka
, M.
(unpublished).13.
Katz
, S.
, Klemm
, A.
, and Vafa
, C.
, “Geometric engineering of quantum field theories
,” Nucl. Phys. B
497
, 173
–195
(1997
).14.
15.
16.
17.
Witten
, E.
, “Phases of theories in two dimensions
,” Nucl. Phys. B
403
, 159
–222
(1993
).© 2005 American Institute of Physics.
2005
American Institute of Physics
You do not currently have access to this content.