In quantum mechanics the statistics of the outcomes of a measuring apparatus is described by a positive operator valued measure (POVM). A quantum channel transforms POVMs into POVMs, generally irreversibly, thus losing some of the information retrieved from the measurement. This poses the problem of which POVMs are “undisturbed,” i.e., they are not irreversibly connected to another POVM. We will call such POVMs clean. In a sense, the clean POVMs would be “perfect,” since they would not have any additional “extrinsical” noise. Quite unexpectedly, it turns out that such a “cleanness” property is largely unrelated to the convex structure of POVMs, and there are clean POVMs that are not extremal and vice versa. In this article we solve the cleannes classification problem for number n of outcomes nd (d dimension of the Hilbert space), and we provide a set of either necessary or sufficient conditions for n>d, along with an iff condition for the case of informationally complete POVMs for n=d2.

1.
Introduction to Quantum Computation and Information
, edited by
H.-K.
Lo
,
S.
Popescu
, and
T.
Spiller
(
World Scientific
, Singapore,
1998
).
2.
P.
Busch
,
P. J.
Lahti
, and
P.
Mittelstaedt
,
The Quantum Theory of Measurement
,
Lecture Notes in Physics
Vol.
2
(
Springer
, Berlin,
1991
).
3.
E. B.
Davies
,
Quantum Theory of Open Systems
(
Academic
, London,
1976
).
4.
K.
Kraus
,
States, Effects, and Operations
(
Springer
, Berlin,
1983
).
5.
Quantum Optics, Experimental Gravity, and Measurement Theory
, edited by
P.
Meystre
and
M. O.
Scully
(
Plenum
, New York,
1983
).
6.
I. L.
Chuang
and
M. A.
Nielsen
,
Quantum Information and Quantum Computation
(
Cambridge University Press
, Cambridge, MA,
2000
).
7.
C. H.
Bennett
,
G.
Brassard
,
C.
Crepeau
,
R.
Jozsa
,
A.
Peres
, and
W. K.
Wootters
,
Phys. Rev. Lett.
70
,
1895
(
1993
).
8.
S. L.
Braunstein
and
H. J.
Kimble
,
Phys. Rev. Lett.
80
,
869
(
1998
).
9.
J. M. G.
Sancho
and
S. F.
Huelga
,
Phys. Rev. A
61
,
042303
(
2000
);
O.
Guhne
,
P.
Hyllus
,
D.
Bruss
,
A.
Ekert
,
M.
Lewenstein
,
C.
Macchiavello
, and
A.
Sanpera
,
Phys. Rev. A
66
,
062305
(
2002
).
10.
C. H.
Bennett
,
G.
Brassard
,
S.
Popescu
,
B.
Schumacher
,
J. A.
Smolin
, and
W. K.
Wootters
,
Phys. Rev. Lett.
76
,
722
(
1996
).
11.
N.
Gisin
,
G.
Ribordy
,
W.
Tittel
, and
H.
Zbinden
,
Rev. Mod. Phys.
74
,
145
(
2002
).
12.
For an earlier history of the subject and a list of main contributors the reader is addressed to the bibliography in Ref. 13.
13.
C. W.
Helstrom
,
Quantum Detection and Estimation Theory
(
Academic
, New York,
1976
).
14.
A. S.
Holevo
,
Probabilistic and Statistical Aspects of Quantum Theory
(
North-Holland
, Amsterdam, The Netherlands,
1982
).
15.
G. M.
D’Ariano
,
P.
Perinotti
, and
P.
Lo Presti
, quant-ph/0408115.
16.
G. M.
D’Ariano
,
J. Math. Phys.
45
,
3620
(
2004
).
17.
G.
Chiribella
and
G. M.
D’Ariano
,
J. Math. Phys.
45
,
4435
(
2004
).
18.
P. W.
Shor
, in
Quantum Communication, Computing, and Measurement 2
, edited by
P.
Kumar
,
G. M.
D’Ariano
, and
O.
Hirota
(
Kluwer Academic/Plenum Publishers
, New York/London,
2000
).
19.
C. A.
Fuchs
and
M.
Sasaki
, quant-ph/0302092 (
2003
).
20.
E. B.
Davies
,
IEEE Trans. Inf. Theory
IT-24
,
596
(
1978
).
21.
G. M.
D’Ariano
,
P.
Perinotti
, and
M. F.
Sacchi
,
Europhys. Lett.
65
,
165
(
2004
).
22.
G. M.
D’Ariano
,
P.
Perinotti
, and
M. F.
Sacchi
,
J. Opt. B: Quantum Semiclassical Opt.
6
,
S487
(
2004
).
23.
G. M.
D’Ariano
,
P.
Perinotti
, and
M. F.
Sacchi
, quant-ph/0507104.
24.
A.
Chefles
,
R.
Jozsa
, and
A.
Winter
, quant-ph/0307227.
25.
G.
Lindblad
,
Lett. Math. Phys.
47
,
189
(
1999
).
26.
V. I.
Paulsen
,
Completely Bounded Maps and Dilations
(
Cambridge University Ptress
, Cambridge, MA,
2002
).
27.
A.
Jamiołkowski
,
Rep. Math. Phys.
3
,
275
(
1972
);
M.-D.
Choi
,
Linear Algebr. Appl.
10
,
285
(
1975
);
G. M.
D’Ariano
and
P.
Lopresti
,
Phys. Rev. Lett.
86
,
4195
(
2001
).
[PubMed]
You do not currently have access to this content.