Recent work has shown the essential equivalence of stopping power, force-force correlation function, and phase-shift analysis for nonlinear potential scattering in a three-dimensional electron gas. In the present study, we first demonstrate that the above situation is markedly different when the scattering occurs from a localized potential in a two-dimensional (2D) electron gas. Only to second order in the potential do the three methods referred to above precisely agree. However, all these methods can still be applied in 2D, some fully nonlinear evaluation proving possible. The one-dimensional case is also discussed, albeit more briefly. Scattering from a two-center modeling of the localized potential is also calculated, but now only in the Born approximation, due to the added complication of a noncentral potential.

1.
N. F.
Mott
and
H.
Jones
,
Theory of Metals and Alloys
(
University Press
, Cambridge, UK),
1940
.
2.
J. A.
Alonso
and
N. H.
March
,
Electrons in Metals and Alloys
(
Academic Press
, New York),
1989
.
3.
L.
Bürgi
,
O.
Jeandupeux
,
H.
Brune
, and
K.
Kern
,
Phys. Rev. Lett.
82
,
4516
(
1999
).
4.
L.
Bürgi
,
H.
Brune
, and
K.
Kern
,
Phys. Rev. Lett.
89
,
176801
(
2002
).
5.
O.
Újsághy
,
J.
Kroha
,
L.
Szunyogh
, and
A.
Zawadowski
,
Phys. Rev. Lett.
85
,
2557
(
2000
).
6.
M. A.
Schneider
,
L.
Vitali
,
N.
Knorr
, and
K.
Kern
,
Phys. Rev. B
65
,
121406
(
2002
).
8.
E.
Zaremba
,
I.
Nagy
, and
P. M.
Echenique
,
Phys. Rev. Lett.
90
,
046801
(
2003
).
9.
J. S.
Rousseau
,
J. C.
Stoddart
, and
N. H.
March
,
J. Phys. C
5
,
L173
(
1972
).
10.
K.
Huang
,
Proc. Phys. Soc.
60
,
161
(
1948
).
11.
N. H.
March
,
Philos. Mag.
32
,
497
(
1975
).
12.
S. K.
Adhikari
,
Am. J. Phys.
54
,
362
(
1986
).
13.
J.-M.
Tang
and
D. J.
Thouless
,
Phys. Rev. B
58
,
14179
(
1998
).
14.
N. H.
March
and
A. M.
Murray
,
Phys. Rev.
120
,
830
(
1960
).
15.
N. H.
March
and
A. M.
Murray
,
Proc. R. Soc. London, Ser. A
261
,
119
(
1961
).
16.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
, New York,
1970
).
17.
H. J.
Lee
,
W.
Ho
, and
M.
Persson
,
Phys. Rev. Lett.
92
,
186802
(
2004
).
18.
N. F.
Mott
and
H. S. W.
Massey
,
The Theory of Atomic Collisions
(
Clarendon Press
, Oxford,
1965
), Sec. VIII/3.1.
19.
I.
Nagy
,
A.
Arnau
, and
P. M.
Echenique
,
Nucl. Instrum. Methods Phys. Res. B
48
,
54
(
1990
).
20.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series and Products
(
Academic Press
, New York,
1965
).
21.
J. C.
Stoddart
,
N. H.
March
, and
M. J.
Stott
,
Phys. Rev.
186
,
683
(
1969
).
22.
M. Q.
Zhang
,
J. Math. Phys.
32
,
1344
(
1991
).
23.
N. H.
March
,
W. H.
Young
, and
S.
Sampanthar
,
The Many-body Problem in Quantum Mechanics
(
Dover
, New York,
1995
).
24.
H.
Bateman
,
Tables of Integral Transforms
(
McGraw-Hill
, New York,
1954
), Vol.
1
.
25.
I. A.
Howard
,
N. H.
March
, and
P. M.
Echenique
,
J. Phys. A
36
,
11451
(
2003
).
26.
E. G.
d’Agliano
,
P.
Kumar
,
W.
Schaich
, and
H.
Suhl
,
Phys. Rev. B
11
,
2122
(
1975
).
27.
J. C.
Stoddart
and
N. H.
March
,
Ann. Phys. (N.Y.)
64
,
174
(
1972
).
28.
O. J.
Heilmann
and
E. H.
Lieb
,
Phys. Rev. A
52
,
3628
(
1995
).
29.
You do not currently have access to this content.