We derive an expression for the commutator of functions of operators with constant commutations relations in terms of the partial derivatives of these functions. This result extends the well-known commutation relation between one operator and a function of another operator. We discuss the range of applicability of the formula with examples in quantum mechanics.

1.
Dirac
,
P. A. M.
,
The Principles of Quantum Mechanics
, 4th ed. revised (
Oxford University Press
, Oxford,
1958
).
2.
Jackiw
,
R.
, “
Physical instances of noncommuting coordinates
,” arXiv:hep-th/0111057 (
2001
).
3.
Louisell
,
W. H.
,
Radiation and Noise in Quantum Electronics
(
McGraw-Hill
, New York,
1964
).
4.
Merzbacher
,
E.
,
Quantum Mechanics
, 3rd ed. (
Wiley
, New York,
1998
).
5.
Snider
,
R. F.
, “
Perturbation variation methods for a quantum Boltzmann equation
,”
J. Math. Phys.
5
,
1580
1587
(
1964
).
6.
Snyder
,
H. S.
, “
Quantized space-time
,”
Phys. Rev.
71
,
38
41
(
1947
).
7.
Transtrum
,
M. K.
and
Van Huele
,
J.-F. S.
, “
Algorithms for normal ordering polynomial functions of noncommuting operators and their Maple implementation
,” (unpublished).
8.
Wilcox
,
R. M.
, “
Exponential operators and parameter differentiation in quantum physics
,”
J. Math. Phys.
8
,
962
982
(
1964
).
You do not currently have access to this content.