Various properties of a class of braid matrices, presented before, are studied considering N2×N2(N=3,4,) vector representations for two subclasses. For q=1 the matrices are nontrivial. Triangularity (R̂2=I) corresponds to polynomial equations for q, the solutions ranging from roots of unity to hyperelliptic functions. The algebras of L operators are studied. As a crucial feature one obtains 2N central, grouplike, homogenous quadratic functions of Lij constrained to equality among themselves by the RLL equations. They are studied in detail for N=3 and are proportional to I for the fundamental 3×3 representation and hence for all iterated coproducts. The implications are analyzed through a detailed study of the 9×9 representation for N=3. The Turaev construction for link invariants is adapted to our class. A skein relation is obtained. Noncommutative spaces associated to our class of R̂ are constructed. The transfer matrix map is implemented, with the N=3 case as example, for an iterated construction of noncommutative coordinates starting from an (N1) dimensional commutative base space. Further possibilities, such as multistate statistical models, are indicated.

1.
A.
Chakrabarti
,
J. Math. Phys.
44
,
5320
(
2003
).
2.
A.
Chakrabarti
and
R.
Chakrabarti
,
J. Math. Phys.
44
,
785
(
2003
).
3.
A.
Chakrabarti
,
J. Math. Phys.
43
,
1589
(
2002
).
4.
L. D.
Faddeev
,
N. Yu.
Reshetikhin
, and
L. A.
Takhtadzhyan
,
Leningrad Math. J.
1
,
193
(
1990
).
5.
A.
Klymik
and
K.
Schmudgen
,
Quantum Groups and Their Representations
(
Springer
, New York,
1997
).
6.
Tata Lectures on Theta II
, edited by
D.
Mumford
(
Birkhauser
, United Kingdom,
1984
) (Appendix by
H.
Umemura
).
7.
R. Bruce
King
,
Beyond the Quartic Equation
(
Birkhauser
, United Kingdom,
1996
), Sec. 8.3.1.
8.
B.
Abdesselam
,
A.
Chakrabarti
, and
R.
Chakrabarti
,
Mod. Phys. Lett. A
13
,
779
(
1998
).
9.
A.
Chakrabarti
and
R.
Chakrabarti
,
J. Phys. A
33
,
1
(
2000
).
10.
A. P.
Isaev
,
Phys. Part. Nucl.
26
,
501
(
1995
).
11.
A.
Chakrabarti
, math.QA∕0401207.
12.
V. G.
Turaev
,
Invent. Math.
92
,
527
(
1988
).
13.
V.
Chari
and
A.
Pressley
,
Quantum Groups
(
Cambridge University Press
, Cambridge,
1994
), Secs. 15.1, 15.2.
14.
15.
J.
Wess
and
B.
Zumino
,
Nucl. Phys. B (Proc. Suppl.)
18B
,
302
(
1990
).
16.
L.
Hlavaty
,
J. Phys. A
25
,
485
(
1992
).
17.
J.
Madore
,
An Introduction to Noncommutative Differential Geometry
(
Cambridge University Press
, Cambridge,
1999
).
18.
B. L.
Cerchiai
,
G.
Fiore
, and
J.
Madore
, math.QA∕0002007.
19.
B.
Abdesselam
,
D.
Arnaudon
, and
A.
Chakrabarti
,
J. Phys. A
28
,
5495
(
1995
).
20.
B.
Abdesselam
,
D.
Arnaudon
, and
A.
Chakrabarti
,
J. Phys. A
28
,
3701
(
1995
).
21.
H.
Au-Yang
,
B. M.
McCoy
,
J.
Perk
,
S.
Tang
, and
M. L.
Yan
,
Phys. Lett. A
123
,
219
(
1987
).
22.
R. J.
Baxter
,
J. H.H.
Perk
, and
H.
Au-Yang
,
Phys. Lett. A
128
,
138
(
1988
).
23.
Yu. I.
Manin
,
Quantum Groups and Non-Commutative Geometry
(
CRM Univ. de Montreal
, Montreal,
1988
).
24.
M.
Dubois-Violette
and
T.
Popov
,
Lett. Math. Phys.
61
,
159
(
2002
).
25.
P.
Kulish
,
J. Phys. A
36
,
L489
(
2003
).
You do not currently have access to this content.