Local scalar quantum field theory (in Weyl algebraic approach) is constructed on degenerate semi-Riemannian manifolds corresponding to Killing horizons in spacetime. Covariance properties of the C*-algebra of observables with respect to the conformal group PSL(2,R) are studied. It is shown that, in addition to the state studied by Guido, Longo, Roberts, and Verch for bifurcated Killing horizons, which is conformally invariant and KMS at Hawking temperature with respect to the Killing flow and defines a conformal net of von Neumann algebras, there is a further wide class of algebraic (coherent) states representing spontaneous breaking of PSL(2,R) symmetry. This class is labeled by functions in a suitable Hilbert space and their GNS representations enjoy remarkable properties. The states are nonequivalent extremal KMS states at Hawking temperature with respect to the residual one-parameter subgroup of PSL(2,R) associated with the Killing flow. The KMS property is valid for the two local subalgebras of observables uniquely determined by covariance and invariance under the residual symmetry unitarily represented. These algebras rely on the physical region of the manifold corresponding to a Killing horizon cleaned up by removing the unphysical points at infinity [necessary to describe the whole PSL(2,R) action]. Each of the found states can be interpreted as a different thermodynamic phase, containing Bose–Einstein condensate, for the considered quantum field. It is finally suggested that the found states could describe different black holes.

1.
Bratteli
,
O.
and
Robinson
,
D. W.
, “
Operator algebras and quantum statistical mechanics
,” C*andW*
Algebras, Symmetry Groups, Decomposition Of States
(
Springer-Verlag
, New York,
1979
), Vol.
1
.
2.
Bratteli
,
O.
and
Robinson
,
D. W.
, “
Operator algebras and quantum statistical mechanics
,”
Equilibrium States. Models in Quantum Statistical Mechanics
(
Springer
, Berlin,
1996
), Vol.
2
.
3.
Brunetti
,
R.
and
Fredenhagen
,
K.
, “
Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds
,”
Commun. Math. Phys.
208
,
623
(
2000
).
4.
Buchholz
,
D.
,
Mack
,
G.
, and
Todorov
,
I.
, “
The current algebra on the circle as a germ of local field theories
,”
Nucl. Phys. B, Proc. Suppl.
5
,
20
(
1988
);
Buchholz
,
D.
, and
Mirbach
,
H. S.
, “
Haag duality in conformal quantum field theory
,”
Rev. Math. Phys.
2
,
105
(
1990
).
5.
Carpi
,
S.
, “
On the representation theory of Virasoro nets
,”
Commun. Math. Phys.
244
,
261
(
2003
).
6.
Dalfovo
,
F.
,
Giorgini
,
S.
,
Pitaevskii
,
L. P.
, and
Stringari
,
S.
, “
Theory of Bose–Einstein condensation in trapped gases
,”
Rev. Mod. Phys.
71
,
463
(
1999
).
7.
Friedlander
,
F. G.
,
The Wave Equation on a Curved Space–Time
(
Cambridge University Press
, Cambridge,
1975
).
8.
Gabbiani
,
F.
and
Frohlich
,
J.
, “
Operator algebras and conformal field theory
,”
Commun. Math. Phys.
155
,
569
(
1993
).
9.
Goodman
,
R.
and
Wallach
,
N. R.
, “
Projective unitary positive-energy representations of diff(S1)
,”
J. Funct. Anal.
63
,
299
(
1985
).
10.
Guido
,
D.
and
Longo
,
R.
, “
The conformal spin and statistics theorem
,”
Commun. Math. Phys.
181
,
11
(
1996
).
11.
Guido
,
D.
,
Longo
,
R.
,
Roberts
,
J. E.
, and
Verch
,
R.
, “
Charged sectors, spin and statistics in quantum field theory on curved spacetimes
,”
Rev. Math. Phys.
13
,
125
(
2001
).
12.
Guido
,
D.
,
Longo
,
R.
, and
Wiesbrock
,
H. W.
, “
Extensions of conformal nets and superselection structures
,”
Commun. Math. Phys.
192
,
217
(
1998
).
13.
Haag
,
R.
,
Local Quantum Physics: Fields, Particles, Algebras
, 2nd ed. (
Springer
, Berlin,
1992
).
14.
Hollands
,
S.
and
Wald
,
R. M.
, “
Local wick polynomials and time ordered products of quantum fields in curved space-time
,”
Commun. Math. Phys.
223
,
289
(
2001
).
15.
Kac
,
V. G.
and
Raina
,
A. K.
,
Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras
(
World Scientific
, Singapore,
1987
).
16.
Kawahigashi
,
Y.
and
Longo
,
R.
, “
Noncommutative spectral invariants and black hole entropy
,”
Commun. Math. Phys.
(to be published).
17.
Kay
,
B. S.
and
Wald
,
R. M.
, “
Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on space-times with a bifurcate Killing horizon
,”
Phys. Rep.
207
,
49
(
1991
).
18.
Laredo
,
V. T
, “
Integrating unitary representations of infinite-dimensional Lie groups
,”
J. Funct. Anal.
161
,
478
(
1999
).
19.
Lewis
,
J. T.
, “
The free boson gas
,” in
Mathematics Of Contemporary Physics
, edited by
R. F.
Streater
(
Academic Press
, London and New York,
1972
);
Bongaarts
,
P. J.
, “
Linear fields according to I.E. Segal
,” in
Mathematics Of Contemporary Physics
, edited by
R. F.
Streater
(
Academic Press
, London and New York,
1972
).
20.
Madore
,
J.
, “
The fuzzy sphere
”,
Class. Quantum Grav.
9
,
69
(
1992
).
21.
Mann
,
R. B.
, “
Pair production of topological anti-de Sitter black holes
”,
Class. Quantum Grav.
14
,
L109
(
1997
);
Black holes of negative mass
,”
Class. Quantum Grav.
14
,
2927
(
1997
).
22.
Manuceau
,
J.
, “
Ètude de quelques automorphismes de laC*-algèbre du champ de bosons libres
,”
Ann. Inst. Henri Poincare, Sect. A
8
,
117
(
1968
);
C*-algèbre de relations de communication
,”
Ann. Inst. Henri Poincare, Sect. A
8
,
139
(
1968
).
23.
Milnor
,
J.
, “
Remarks on infinite dimensional Lie groups
,” in
Relativity, Groups and Topology II
, edited by
B. S.
DeWitt
and
R.
Stora
,
Les
Houches
, Session XL, 1983 (
Elsevier
, Amsterdam∕New York,
1984
), pp.
1007
1057
.
24.
Moretti
,
V.
, “
Comments on the stress-energy tensor operator in curved spacetime
,”
Commun. Math. Phys.
232
,
189
(
2003
).
25.
Moretti
,
V.
and
Pinamonti
,
N.
, “
Aspects of hidden and manifest SL(2,R)-symmetry in 2d near-horizon black-hole backgrounds
,”
Nucl. Phys. B
647
,
131
(
2002
).
26.
Moretti
,
V.
and
Pinamonti
,
N.
, “
Holography, SL(2,R) symmetry, Virasoro algebra and all that in Rindler spacetime
,”
J. Math. Phys.
45
,
230
(
2004
).
27.
Moretti
,
V.
and
Pinamonti
,
N.
, “
Quantum Virasoro algebra with central charge c=1 on the horizon of a 2D Rindler spacetime
,”
J. Math. Phys.
45
,
257
(
2004
).
28.
Nelson
,
E.
, “
Analytic vectors
,”
Ann. Math.
70
,
572
(
1959
).
29.
Pinamonti
,
N.
and
Vanzo
,
L.
, “
Central charges and boundary fields for two-dimensional dilatonic black holes
,”
Phys. Rev. D
69
,
084012
(
2004
).
30.
Popov
,
V. N.
,
Functional Integrals in Quantum Field Theory and Statistical Physics
(
Reidel
, Boston,
1983
).
31.
Racz
,
I.
and
Wald
,
R. M.
, “
Global extensions of space-times describing asymptotic final states of black holes
,”
Class. Quantum Grav.
13
,
539
(
1996
).
32.
Rocca
,
F.
,
Sirugue
,
M.
, and
Testard
,
D.
, “
On a class of equilibrium states under the Kubo–Martin–Schwinger condition
,”
Commun. Math. Phys.
19
,
119
(
1970
).
33.
Roepstorff
,
G.
, “
Coherent photon states and spectral condition
,”
Commun. Math. Phys.
19
,
301
(
1970
).
34.
Schroer
,
B.
, “
Lightfront formalism versus holography and chiral scanning
,” hep-th∕0108203;
Lightfront holography and area density of entropy associated with localization on wedge-horizons
,”
Int. J. Mod. Phys. A
18
,
1671
(
2003
);
The paradigm of the area law and the structure of transversal-longitudinal lightfront degrees of freedom
,”
J. Phys. A
35
,
9165
(
2002
).
35.
Sewell
,
G. L.
, “
Quantum fields on manifolds: PCT and gravitationally induced thermal states
,”
Ann. Phys. (N.Y.)
141
,
201
(
1982
).
36.
Vanzo
,
L.
, “
Black holes with unusual topology
,”
Phys. Rev. D
56
,
6475
(
1997
).
37.
Wald
,
R. M.
,
General Relativity
(
Chicago University Press
, Chicago,
1984
).
38.
Wald
,
R. M.
,
Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics
(
Chicago University Press
, Chicago,
1994
).
39.
Wiesbrock
,
H. W.
, “
Half sided modular inclusions of von Neumann algebras
,”
Commun. Math. Phys.
157
,
83
(
1993
);
Wiesbrock
,
H. W.
, “
Half sided modular inclusions of von Neumann algebras
,”
Commun. Math. Phys.
184
,
683
(E) (
1997
).
40.
Wiesbrock
,
H. W.
, “
Conformal quantum field theory and half sided modular inclusions of von Neumann algebras
,”
Commun. Math. Phys.
158
,
537
(
1993
).
You do not currently have access to this content.