On pure states of n quantum bits, the concurrence entanglement monotone returns the norm of the inner product of a pure state with its spin-flip. The monotone vanishes for n odd, but for n even there is an explicit formula for its value on mixed states, i.e., a closed-form expression computes the minimum over all ensemble decompositions of a given density. For n even a matrix decomposition ν=k1ak2 of the unitary group is explicitly computable and allows for study of the monotone’s dynamics. The side factors k1 and k2 of this concurrence canonical decomposition (CCD) are concurrence symmetries, so the dynamics reduce to consideration of the a factor. This unitary a phases a basis of entangled states, and the concurrence dynamics of u are determined by these relative phases. In this work, we provide an explicit numerical algorithm computing ν=k1ak2 for n odd. Further, in the odd case we lift the monotone to a two-argument function. The concurrence capacity of ν according to the double argument lift may be nontrivial for n odd and reduces to the usual concurrence capacity in the literature for n even. The generalization may also be studied using the CCD, leading again to maximal capacity for most unitaries. The capacity of νI2 is at least that of ν, so odd-qubit capacities have implications for even-qubit entanglement. The generalizations require considering the spin-flip as a time reversal symmetry operator in Wigner’s axiomatization, and the original Lie algebra homomorphism defining the CCD may be restated entirely in terms of this time reversal. The polar decomposition related to the CCD then writes any unitary evolution as the product of a time-symmetric and time-antisymmetric evolution with respect to the spin-flip. En route we observe a Kramers’ nondegeneracy: the existence of a nondegenerate eigenstate of any time reversal symmetricn-qubit Hamiltonian demands (i) n even and (ii) maximal concurrence of said eigenstate. We provide examples of how to apply this work to study the kinematics and dynamics of entanglement in spin chain Hamiltonians.

1.
Albertini
,
F.
and
D’Alessandro
,
D.
, “
Model identification for spin networks
,”
Linear Algebr. Appl.
394
,
237
(
2005
).
2.
Anderson
,
E.
,
Bai
,
Z.
,
Bischof
,
C.
,
Blackford
,
S.
,
Demmel
,
J.
,
Dongarra
,
J.
,
Du Croz
,
J.
,
Greenbaum
,
A.
,
Hammarling
,
S.
,
McKenney
,
A.
, and
Sorensen
,
D.
,
LAPACK Users’ Guide
, 3rd ed. (
SIAM
, Philadelphia,
1999
).
3.
Barnum
,
H.
and
Linden
,
N.
, “
Monotones and invariants for ‘multi-particle quantum states
,’ ”
J. Phys. A
34
,
6787
(
2001
).
4.
Bennett
,
C.
,
DiVincenzo
,
D.
,
Smolin
,
J.
, and
Wootters
,
W.
, “
Mixed-state entanglement and quantum error correction
,”
Phys. Rev. A
54
,
3824
(
1996
).
5.
Bremner
,
M.
,
Dodd
,
J.
,
Nielsen
,
M.
, and
Bacon
,
D.
, “
Fungible dynamics: There are only two types of entangling multi-qubit interactions
,”
Phys. Rev. A
69
,
012313
(
2004
).
6.
Brennen
,
G. K.
, “
An observable measure of entanglement for pure states of multi-qubit systems
,”
Quantum Inf. Comput.
3
,
619
(
2003
).
7.
Brennen
,
G. K.
and
Bullock
,
S. S.
, “
Stability of global entanglement in thermal states of spin chains
,”
Phys. Rev. A
70
,
052303
(
2004
).
8.
Bullock
,
S.
and
Brennen
,
G.
, “
Canonical decompositions of n-qubit quantum computations and concurrence
,”
J. Math. Phys.
45
,
2447
(
2004
).
9.
Bullock
,
S.
and
Brennen
,
G.
, “
Characterizing the entangling capacity of n-qubit computations
,”
Proc. SPIE
5436
,
127
(
2004
) (see http:∕∕math.nist.gov∕SBullock).
10.
Bullock
,
S.
and
Markov
,
I.
, “
An elementary two-qubit quantum computation in twenty-three elementary gates
,”
Phys. Rev. A
68
,
012318
(
2003
).
11.
Bullock
,
S. S.
, “
Note on the Khaneja Glaser decomposition
,”
Quantum Inf. Comput.
5
,
396
(
2004
).
12.
Bunse-Gerstner
,
A.
,
Byers
,
R.
, and
Mehrmann
,
V.
, “
A chart of numerical methods for structured eigenvalue problems
,”
SIAM J. Matrix Anal. Appl.
13
,
419
(
1992
).
13.
Childs
,
A.
,
Haselgrove
,
H.
, and
Nielsen
,
M.
, “
Lower bounds on the complexity of simulating quantum gates
,”
Phys. Rev. A
68
,
052311
(
2003
).
14.
D’Alessandro
,
D.
, “
Constructive controllability of one and two spin 12 particles
,”
Proceedings of the 2001 American Control Conference
,
Arlington
, VA, June
2001
(see http:∕http:∕∕www.public.iastate.edu∕̃daless∕QC3.html∕).
15.
Dongarra
,
J.
,
Gabriel
,
J.
,
Koelling
,
D.
, and
Wilkinson
,
J.
, “
The eigenvalue problem for Hermitian matrices with time reversal symmetry
,”
Linear Algebr. Appl.
60
,
27
(
1984
).
16.
Dür
,
W.
,
Vidal
,
G.
, and
Cirac
,
J. I.
, “
Three qubits can be entangled in two inequivalent ways
,”
Phys. Rev. A
62
,
062314
(
2000
).
17.
Dyson
,
F.
, “
Statistical theory of energy levels of complex system, I.
,”
J. Math. Phys.
3
,
140
(
1961
).
18.
Eisert
,
J.
and
Briegel
,
H.
, “
The Schmidt measure as a tool for quantifying multi-particle entanglement
,”
Phys. Rev. A
64
,
022306
(
2001
).
19.
Gottfried
,
K.
,
Quantum Mechanics
(
Benjamin
,
1966
).
20.
Gour
,
G.
, “
A family of concurrence monotones and its applications
,” http:∕∕www.arxiv.org∕abs∕quant-ph∕0410148.
21.
Helgason
,
S.
,
Differential Geometry, Lie Groups, and Symmetric Spaces
(
American Mathematical Society
, Providence, RI,
2001
), vol.
34
, graduate studies in mathematics, (corrected reprint of the 1978 original edition).
22.
Hill
,
S.
and
Wootters
,
W.
, “
Entanglement of a pair of quantum bits
,”
Phys. Rev. Lett.
78
,
5022
(
1997
).
23.
Horodecki
,
M.
,
Horodecki
,
P.
, and
Horodecki
,
R.
, “
Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments
,” Springer Tracts in Modern Physics (
2001
), quant-ph∕0109124.
24.
Khaneja
,
N.
,
Brockett
,
R.
, and
Glaser
,
S. J.
, “
Time optimal control in spin systems
,”
Phys. Rev. A
63
,
032308
(
2001
).
25.
Khaneja
,
N.
and
Glaser
,
S.
, “
Cartan decomposition of SU(2n) and control of spin systems
,”
Chem. Phys.
267
,
11
(
2001
) (see http:∕∕www.sciencedirect.com∕science∕journal∕03010104).
26.
Kramers
,
H. A.
, “
Theorie generale de la rotation paramagnetique dans les cristaux
,”
Proc. R. Acad. Sci. Amsterdam
33
,
959
(
1930
).
27.
Kramers
,
H. A.
,
Quantum Mechanics
(
Dover
, Phoenix,
2004
), ISBN 0486495337.
28.
Kraus
,
B.
and
Cirac
,
J. I.
, “
Optimal creation of entanglement using a two-qubit gate
,”
Phys. Rev. A
63
,
062309
(
2001
).
29.
Lewenstein
,
M.
,
Kraus
,
B.
,
Horodecki
,
P.
, and
Cirac
,
I.
, “
Characterization of separable states and entanglement witnesses
,”
Phys. Rev. A
63
,
044304
(
2001
).
30.
Lieb
,
E.
,
Schultz
,
T.
, and
Mattis
,
D.
, “
Two soluble models of an antiferromagnetic chain
,”
Ann. Phys.
16
,
407
(
1961
).
31.
Makhlin
,
Y.
, “
Nonlocal properties of two-qubit gates and mixed states and optimization of quantum computations
,”
Quantum Inf. Process.
1
,
243
252
(
2002
).
32.
Meyer
,
D.
and
Wallach
,
N.
, “
Global entanglement in multi-partite systems
,”
J. Math. Phys.
43
,
4273
(
2002
).
33.
Miyake
,
A.
and
Wadati
,
M.
, “
Multi-partite entanglement and hyperdeterminants
,”
Quantum Inf. Comput.
2
,
540
(
2002
).
34.
Munkres
,
J.
,
Elements of Algebraic Topology
(
Addison-Wesley
, New York,
1984
).
35.
Nakahara
,
N.
,
Vartiainen
,
J.
,
Kondo
,
Y.
, and
Tanimura
,
K.
, “
Warp-drive quantum computation
,” http:∕∕www.arxiv.org∕abs∕quant-ph∕0308006.
36.
Nielsen
,
M.
and
Chuang
,
I.
,
Quantum Information and Computation
(
Cambridge University Press
, Cambridge,
2000
).
37.
Ramakrishna
,
V.
,
Ober
,
R. J.
,
Flores
,
K. L.
, and
Rabitz
,
H.
, “
Control of a coupled two-spin system without hard pulses
,”
Phys. Rev. A
65
,
063405
(
2002
).
38.
Rungta
,
P.
,
Buzek
,
V.
,
Caves
,
C.
,
Hillery
,
M.
, and
Milburn
,
G.
, “
Universal state inversion and concurrence in arbitrary dimensions
,”
Phys. Rev. A
64
,
042315
(
2001
).
39.
Sakurai
,
J. J.
,
Modern Quantum Mechanics
, revised Ed. (
Addison–Wesley
, New York,
1985
).
40.
Scott
,
A.
and
Caves
,
C.
, “
Entangling power of the quantum baker’s map
,”
J. Phys. A
36
,
9553
9576
(
2003
).
41.
Shende
,
V.
,
Bullock
,
S.
, and
Markov
,
I.
, “
Recognizing small-circuit structure in two-qubit operators
,”
Phys. Rev. A
70
,
012310
(
2004
).
42.
Uhlmann
,
A.
, “
Fidelity and concurrence of conjugated states
,”
Phys. Rev. A
62
,
032307
(
2000
).
43.
Vatan
,
F.
and
Williams
,
C.
, “
Optimal realization of an arbitrary two-Qubit quantum gate
,”
Phys. Rev. A
69
,
032315
(
2004
).
44.
Verstraete
,
F.
,
Dehaene
,
J.
,
De Moor
,
B.
, and
Verschelde
,
H.
, “
Four qubits can be entangled in nine different ways
,”
Phys. Rev. A
65
,
052112
(
2002
).
45.
Vidal
,
G.
, “
Entanglement monotones
,”
J. Mod. Opt.
47
,
355
(
2000
).
46.
Vidal
,
G.
and
Dawson
,
C.
, “
A universal quantum circuit for two-qubit transformations with three CNOT gates
,”
Phys. Rev. A
69
,
010301
(
2004
).
47.
Wigner
,
E.
,
Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra
(
Academic
, New York,
1959
).
48.
Wong
,
A.
and
Christensen
,
N.
, “
A potential multiparticle entanglement measure
,”
Phys. Rev. A
63
,
044301
(
2001
).
49.
Zhang
,
J.
,
Vala
,
J.
,
Sastry
,
S.
, and
Whaley
,
K.
, “
Geometric theory of nonlocal two-qubit operations
,”
Phys. Rev. A
67
,
042313
(
2003
).
50.
Some authors only use the term Cartan involution in the case that g is a noncompact Lie algebra. In their terminology, this definition of a Cartan involution on the Lie algebra of a compact group, e.g., su(N), is the image of a Cartan involution of a noncompact Lie algebra through symmetric duality (g=kp)(gdual=kip).
You do not currently have access to this content.