Two types of results are presented for distinguishing pure bipartite quantum states using local operations and classical communications. We examine sets of states that can be perfectly distinguished, in particular showing that any three orthogonal maximally entangled states in C3C3 form such a set. In cases where orthogonal states cannot be distinguished, we obtain upper bounds for the probability of error using LOCC taken over all sets of k orthogonal states in CnCm. In the process of proving these bounds, we identify some sets of orthogonal states for which perfect distinguishability is not possible.

1.
Badziąag
,
P.
,
Horodecki
,
M.
,
Sen(De)
,
A.
, and
Sen
,
U.
, “
Locally accessible information: How much can the parties gain by cooperating?
,”
Phys. Rev. Lett.
91
,
117901
(
2003
).
2.
Bennett
,
C.
,
DiVincenzo
,
D.
,
Fuchs
,
C.
,
Mor
,
T.
,
Rains
,
E.
,
Shor
,
P.
,
Smolin
,
J.
, and
Wootters
,
W.
, “
Quantum nonlocality without entanglement
,”
Phys. Rev. A
59
,
1070
(
1999
).
3.
Chen
,
P.-X.
, and
Li
,
C.-Z.
, “
Orthogonality and distinguishability: Criterion for local distinguishability of arbitrary orthogonal states
,”
Phys. Rev. A
68
,
062107
(
2003
).
4.
De Rinaldis
,
S.
, “
Distinguishability of complete and unextendible product bases
,”
Phys. Rev. A
70
,
022309
(
2004
).
5.
Fan
,
H.
, “
Distinguishability and indistinguishability by LOCC
,”
Phys. Rev. Lett.
92
,
177905
(
2004
).
6.
Ghosh
,
S.
,
Kar
,
G.
,
Roy
,
A.
, and
Sarkar
,
D.
, “
Distinguishability of maximally entangled states
,”
Phys. Rev. A
70
,
022304
(
2004
).
7.
Ghosh
,
S.
,
Kar
,
G.
,
Roy
,
A.
,
Sen(De)
,
A.
, and
Sen
,
U.
, “
Distinguishability of the Bell States
,”
Phys. Rev. Lett.
87
,
277902
(
2001
).
8.
Gregoratti
,
M.
, and
Werner
,
R. F.
, “
On quantum error correction by classical feedback in discrete time
,”
J. Modern Optics
50
,
916
933
(
2003
).
9.
Hayden
,
P.
, and
King
,
C.
, “
Correcting quantum channels by measuring the environment
,”
Quantum Inf. Comput.
5
,
156
160
(
2005
).
10.
Horodecki
,
M.
,
Sen(De)
,
A.
,
Sen
,
U.
, and
Horodecki
,
K.
, “
Local indistinguishability: more nonlocality with less entanglement
,”
Phys. Rev. Lett.
90
,
047902
(
2003
).
11.
Pittenger
,
A.
, and
Rubin
,
M.
, “
Mutually unbiased bases, generalized spin matrices and separability
,”
Linear Algebr. Appl.
390
,
225
278
(
2004)
.
12.
Rains
,
E.
, “
Entanglement purification via separable superoperators
,”
Phys. Rev. A
69
,
173
178
(
1999
).
13.
Terhal
,
B.
,
DiVincenzo
,
D.
, and
Leung
,
D.
, “
Hiding bits in Bell states
,”
Phys. Rev. Lett.
86
,
5807
(
2001
).
14.
Walgate
,
J.
, and
Hardy
,
L.
, “
Nonlocality, asymmetry, and distinguishing bipartitite states
,”
Phys. Rev. Lett.
89
,
147901
(
2002
).
15.
Walgate
,
J.
,
Short
,
A.
,
Hardy
,
L.
, and
Vedral
,
V.
, “
Local Distinguishability of multipartite orthogonal quantum states
,”
Phys. Rev. Lett.
85
,
4972
(
2000
).
16.
Wootters
,
W.
, “
Picturing qubits in phase space
,”
IBM J. Res. Dev.
48
,
99
(
2004
).
You do not currently have access to this content.