Two types of results are presented for distinguishing pure bipartite quantum states using local operations and classical communications. We examine sets of states that can be perfectly distinguished, in particular showing that any three orthogonal maximally entangled states in form such a set. In cases where orthogonal states cannot be distinguished, we obtain upper bounds for the probability of error using LOCC taken over all sets of orthogonal states in . In the process of proving these bounds, we identify some sets of orthogonal states for which perfect distinguishability is not possible.
REFERENCES
1.
Badziąag
, P.
, Horodecki
, M.
, Sen(De)
, A.
, and Sen
, U.
, “Locally accessible information: How much can the parties gain by cooperating?
,” Phys. Rev. Lett.
91
, 117901
(2003
).2.
Bennett
, C.
, DiVincenzo
, D.
, Fuchs
, C.
, Mor
, T.
, Rains
, E.
, Shor
, P.
, Smolin
, J.
, and Wootters
, W.
, “Quantum nonlocality without entanglement
,” Phys. Rev. A
59
, 1070
(1999
).3.
Chen
, P.-X.
, and Li
, C.-Z.
, “Orthogonality and distinguishability: Criterion for local distinguishability of arbitrary orthogonal states
,” Phys. Rev. A
68
, 062107
(2003
).4.
De Rinaldis
, S.
, “Distinguishability of complete and unextendible product bases
,” Phys. Rev. A
70
, 022309
(2004
).5.
Fan
, H.
, “Distinguishability and indistinguishability by LOCC
,” Phys. Rev. Lett.
92
, 177905
(2004
).6.
Ghosh
, S.
, Kar
, G.
, Roy
, A.
, and Sarkar
, D.
, “Distinguishability of maximally entangled states
,” Phys. Rev. A
70
, 022304
(2004
).7.
Ghosh
, S.
, Kar
, G.
, Roy
, A.
, Sen(De)
, A.
, and Sen
, U.
, “Distinguishability of the Bell States
,” Phys. Rev. Lett.
87
, 277902
(2001
).8.
Gregoratti
, M.
, and Werner
, R. F.
, “On quantum error correction by classical feedback in discrete time
,” J. Modern Optics
50
, 916
–933
(2003
).9.
Hayden
, P.
, and King
, C.
, “Correcting quantum channels by measuring the environment
,” Quantum Inf. Comput.
5
, 156
–160
(2005
).10.
Horodecki
, M.
, Sen(De)
, A.
, Sen
, U.
, and Horodecki
, K.
, “Local indistinguishability: more nonlocality with less entanglement
,” Phys. Rev. Lett.
90
, 047902
(2003
).11.
Pittenger
, A.
, and Rubin
, M.
, “Mutually unbiased bases, generalized spin matrices and separability
,” Linear Algebr. Appl.
390
, 225
–278
(2004)
.12.
Rains
, E.
, “Entanglement purification via separable superoperators
,” Phys. Rev. A
69
, 173
–178
(1999
).13.
Terhal
, B.
, DiVincenzo
, D.
, and Leung
, D.
, “Hiding bits in Bell states
,” Phys. Rev. Lett.
86
, 5807
(2001
).14.
Walgate
, J.
, and Hardy
, L.
, “Nonlocality, asymmetry, and distinguishing bipartitite states
,” Phys. Rev. Lett.
89
, 147901
(2002
).15.
Walgate
, J.
, Short
, A.
, Hardy
, L.
, and Vedral
, V.
, “Local Distinguishability of multipartite orthogonal quantum states
,” Phys. Rev. Lett.
85
, 4972
(2000
).16.
Wootters
, W.
, “Picturing qubits in phase space
,” IBM J. Res. Dev.
48
, 99
(2004
).© 2005 American Institute of Physics.
2005
American Institute of Physics
You do not currently have access to this content.