The quantum effects for a physical system can be described by the set E(H) of positive operators on a complex Hilbert space H that are bounded above by the identity operator. While a general effect may be unsharp, the collection of sharp effects is described by the set of orthogonal projections P(H)E(H). Under the natural order, E(H) becomes a partially ordered set that is not a lattice if dimH2. A physically significant and useful characterization of the pairs A,BE(H) such that the infimum AB exists is called the infimum problem. We show that AP exists for all AE(H), PP(H) and give an explicit expression for AP. We also give a characterization of when A(IA) exists in terms of the location of the spectrum of A. We present a counterexample which shows that a recent conjecture concerning the infimum problem is false. Finally, we compare our results with the work of Ando on the infimum problem.

1.
Ando
,
T.
, “
Lebesgue-type decomposition of positive operators
,”
Acta Sci. Math.
, Széged
38
,
253
260
(
1976
).
2.
Ando
,
T.
, “
Problem of infimum in the positive cone
,”
Analytic and Geometric Inequalities and Applications
,
Math. Appl. 478
(
Kluwer Academic
, Dordrecht,
1999
).
3.
Busch
,
P.
,
Grabowski
,
M.
, and
Lahti
,
P. J.
,
Operational Quantum Physics
(
Springer
, Berlin,
1995
).
4.
Busch
,
P.
,
Lahti
,
P. J.
, and
Middlestaedt
,
P.
,
The Quantum Theory of Measurements
(
Springer
, Berlin
1991
).
5.
Davies
,
E. B.
,
Quantum Theory of Open Systems
(
Academic
, New York,
1976
).
6.
Douglas
,
R. G.
, “
On majorization, factorization, and range inclusion of operators on Hilbert space
,”
Proc. Am. Math. Soc.
17
,
413
415
(
1966
).
7.
Dvurečenskij
,
A.
and
Pulmannová
,
S.
,
New Trends in Quantum Structures
,
Mathematics and its Applications
, Vol.
516
(
Kluwer Academic
, Dordrecht, Ister Science, Bratislava
2000
).
8.
Fillmore
,
P. A.
and
Williams
,
J. P.
, “
On operator ranges
,”
Adv. Math.
7
,
254
281
(
1971
).
9.
Gheondea
,
A.
and
Gudder
.
S.
, “
Sequential product of quantum effects
,”
Proc. Am. Math. Soc.
132
,
503
512
(
2004
).
10.
Gudder
,
S.
, “
Examples, problems and results in effect algebras
,”
Int. J. Theor. Phys.
35
,
2365
2376
(
1996
).
11.
Gudder
,
S.
, “
Lattice properties of quantum effects
,”
J. Math. Phys.
37
,
2637
2642
(
1996
).
12.
Gudder
,
S.
and
Greechie
,
R.
, “
Effect algebra counterexamples
,”
Math. Slovaca
46
,
317
325
(
1996
).
13.
Heinonen
,
T.
,
Lahti
,
P.
,
Pellonpää
,
J.-P
,
Pulmannová
,
S.
, and
Ylinen
,
K.
, “
The norm-1-property of a quantum observable
,”
J. Math. Phys.
44
,
1998
2008
(
2003
).
14.
Holevo
,
A. S.
,
Probabilistic and Statistical Aspects of Quantum Theory
(
North-Holland
, Amsterdam,
1982
).
15.
Kadison
,
R.
, “
Order properties of bounded self-adjoint operators
,”
Proc. Am. Math. Soc.
34
,
505
510
(
1951
).
16.
Kraus
,
K.
,
States, Effects and Operations
(
Springer
, Berlin,
1983
).
17.
Lahti
,
P. J.
and
Maczynski
,
M.
, “
On the order structure of the set of effects in quantum mechanics
,”
J. Math. Phys.
36
,
1673
1680
(
1995
).
18.
Ludwig
,
G.
,
Foundations of Quantum Mechanics
(
Springer
, Berlin
1983∕1985
), Vols.
I and II
.
19.
Moreland
,
T.
and
Gudder
,
S.
, “
Infima of Hilbert space effects
,”
Linear Algebr. Appl.
286
,
1
17
(
1999
).
20.
Pekarev
,
E. L.
and
Shmulyan
,
Yu. L.
, “
Parallel addition and parallel subtraction of operators
,”
Izv. Akad. Nauk SSSR, Ser. Mat.
40
,
366
387
(
1976
).
21.
Shmulyan
,
Yu. L.
, “
An operator Hellinger integral
,”
Mat. Sb.
49
,
381
430
(
1959
).
You do not currently have access to this content.