In the spirit of some earlier work on the construction of vector coherent states (VCS) over matrix domains, we compute here such states associated to some physical Hamiltonians. In particular, we construct vector coherent states of the Gazeau–Klauder type. As a related problem, we also suggest a way to handle degeneracies in the Hamiltonian for building coherent states. Specific physical Hamiltonians studied include a single photon mode interacting with a pair of fermions, a Hamiltonian involving a single boson and a single fermion, a charged particle in a three-dimensional harmonic force field and the case of a two-dimensional electron placed in a constant magnetic field, orthogonal to the plane which contains the electron. In this last example, which is related to the fractional quantum Hall effect, an interesting modular structure emerges for two underlying von Neumann algebras, related to opposite directions of the magnetic field. This leads to the existence of coherent states built out of Kubo-Martin-Schwinger (KMS) states for the system.

1.
Agarwal
,
G. S.
and
Tara
,
K.
, “
Nonclassical properties of states generated by the exitations on a coherent state
,”
Phys. Rev. A
43
,
492
497
(
1991
).
2.
Ali
,
S. T.
,
Antoine
,
J.-P.
, and
Gazeau
,
J.-P.
,
Coherent States, Wavelets and their Generalizations
(
Springer-Verlag
, New York,
2000
).
3.
Ali
,
S. T.
and
Emch
,
G. G.
, “
Geometric quantization: Modular reduction theory and coherent states
,”
J. Math. Phys.
27
,
2936
2943
(
1986
).
4.
Ali
,
S. T.
,
Engliš
,
M.
, and
Gazeau
,
J.-P.
, “
Vector coherent states from Plancherel’s theorem, Clifford algebras and matrix domains
,”
J. Phys. A
37
,
6067
6089
(
2004
).
5.
Antoine
,
J. P.
and
Bagarello
,
F.
, “
Localization properties and wavelet-like orthonormal bases for the lowest Landau level
,” in
Advances in Gabor Analysis
, edited by
H. G.
Feichtinger
and
T.
Strohmer
(
Birkhäuser
, Boston,
2003
).
6.
Aronszajn
,
A.
, “
Theory of reproducing kernels
,”
Trans. Am. Math. Soc.
66
,
337
404
(
1950
).
7.
Bagarello
,
F.
,
Morchio
,
G.
, and
Strocchi
,
F.
, “
Quantum corrections to the Wigner crystal. An Hartree–Fock expansion
,”
Phys. Rev. B
48
,
5306
5314
(
1993
).
8.
Fox
,
R. F.
and
Choi
,
M. H.
, “
Generalized coherent states for systems with degenerate energy spectra
,”
Phys. Rev. A
64
,
042104
042109
(
2001
).
9.
Gazeau
,
J. P.
,
Hsiao
,
P. Y.
, and
Jellal
,
A.
, “
Exact trace formulas for two-dimensional electron magnetism
,”
Phys. Rev. B
65
,
094427
(
2002
).
10.
Gazeau
,
J. P.
and
Klauder
,
J. R.
, “
Coherent states for systems with discrete and continuous spectrum
,”
J. Phys. A
32
,
123
132
(
1999
).
11.
Gazeau
,
J. P.
and
Monceau
,
P.
, “
Generalized coherent states for arbitrary quantum systems
,” in
Conférence Moshé Flato 1999—Quantization, Deformation and Symmetries
, edited by
G.
Dito
and
D.
Sternheimer
(
Kluwer Academic
, Dordrecht,
2000
), Vol.
II
, pp.
131
144
.
12.
Gazeau
,
J. P.
and
Novaes
,
M.
, “
Multidimensional generalized coherent states
,”
J. Phys. A
36
,
199
212
(
2003
).
13.
Girvin
,
S. M.
,
The Quantum Hall Effect: Novel Excitations and Broken Symmetries
(
Springer-Verlag
, New York,
1999
).
14.
Haag
,
R.
,
Hugenholtz
,
N.
, and
Winnink
,
M.
, “
On the equilibrium states in quantum statistical mechanics
,”
Commun. Math. Phys.
5
,
215
236
(
1967
).
15.
Klauder
,
J. R.
, “
Coherent states for the hydrogen atom
,”
J. Phys. A
29
,
L293
L298
(
1996
).
16.
Meschkowsky
,
H.
,
Hilbertsche Räume mit Kernfunktionen
(
Springer-Verlag
, Berlin,
1962
).
17.
Simon
,
D. T.
and
Geller
,
M. R.
, “
Electron-phonon dynamics in an ensemble of nearly isolated nanoparticles
,”
Phys. Rev. B
64
,
224504
(
2001
).
18.
Takesaki
,
M.
,
Tomita’s Theory of Modular Hilbert Algebras and its Applications
,
Lect. Notes Math. Vol. 128
(
Springer-Verlag
, Berlin,
1970
).
19.
Takesaki
,
M.
,
Theory of Operator Algebras. I
(
Springer-Verlag
, New York,
1979
).
20.
Thirulogasanthar
,
K.
and
Ali
,
S. T.
, “
A class of vector coherent states defined over matrix domains
,”
J. Math. Phys.
44
,
5070
5083
(
2003
).
You do not currently have access to this content.