We consider the two-dimensional Schrödinger operator, , where is a non-negative scalar potential decaying at infinity like , and is a magnetic vector potential. Here, is of the form and the magnetic field is assumed to be positive, bounded, and monotonically increasing on (the Iwatsuka model). Following the argument as in Refs. 15, 16, and 17 [Raikov, G. D., Lett. Math. Phys., 21, 41–49 (1991); Raikov, G. D, Commun. Math. Phys., 155, 415–428 (1993); Raikov, G. D. Asymptotic Anal., 16, 87–89 (1998)], we obtain the asymptotics of the number of discrete spectra of crossing a real number in the gap of the essential spectrum as the coupling constant tends to , respectively.
REFERENCES
1.
Alama
, S.
, Deift
, P. A.
, and Hempel
, R.
, “Eigenvalue branches of the Schrödinger operator in a gap of
,” Commun. Math. Phys.
121
, 291
–321
(1989
).2.
Avron
, J.
, Herbst
, I.
, and Simon
, B.
, “Schrödinger operators with magnetic fields I. General interactions
,” Duke Math. J.
45
, 847
–883
(1978
).3.
Beals
, R.
, “A general calculus of pseudodifferential operators
,” Duke Math. J.
42
, 1
–42
(1975
).4.
Birman
, M. S.
, “Discrete spectrum in the gaps of a continuous one for perturbations with large coupling constant
,” Adv. Sov. Math.
7
, 57
–73
(1991
).5.
Colin de Verdiere
, Y.
, “L’asymptotique de Weyl pour les bouteilles magnétiques
,” Commun. Math. Phys.
105
, 327
–335
(1986
).6.
Cycon
, H. L.
, Froese
, R. G.
, Kirsch
, W.
, and Simon
, B.
, Schrödinger Operators
(Springer-Verlag
, New York, 1987
).7.
Dauge
, M.
and Robert
, D.
, “Weyl’s formula for a class of pseudodifferential operators with negative order on
,” Lect. Notes Math.
1256
, 91
–122
(1987
).8.
Exner
, P.
and Kovařik
, H.
, “Magnetic strip waveguides
,” J. Phys. A
33
, 3297
–3311
(2000
).9.
Hempel
, R.
and Levendorskiĭ
, S. Z.
, “On the eigenvalues in gaps for perturbed magnetic Schrödinger operators
,” J. Math. Phys.
39
, 63
–78
(1998
).10.
Hörmander
, L.
, “The Weyl calculus of pseudo-differential operators
,” Commun. Pure Appl. Math.
32
, 359
–443
(1979
).11.
Iwatsuka
, A.
, “Examples of absolutely continuous Schrödinger operators in magnetic fields
,” Publ. Res. Inst. Math. Sci.
21
, 385
–401
(1985
).12.
Levendorskiĭ
, S. L.
, “Lower bounds for the number of eigenvalue branches for the Schrödinger operator in a gap of : the case of indefinite
,” Commun. Partial Differ. Equ.
20
, 827
–854
(1995
).13.
Levendorskiĭ
, S. L.
, “The asymptotics for the number of eigenvalue branches for the magnetic Schrödinger operator in a gap of
,” Math. Z.
223
, 609
–625
(1996
).14.
Mantoiu
, M.
and Purice
, R.
, “Some propagation properties of the Iwatsuka model
,” Commun. Math. Phys.
188
, 691
–708
(1997
).15.
Raikov
, G. D.
, “Strong electric field eigenvalue asymptotics for the Schrödinger operator with electromagnetic potential
,” Lett. Math. Phys.
21
, 41
–49
(1991
).16.
Raikov
, G. D.
, “Strong-electric-field eigenvalue asymptotics for the perturbed magnetic Schrödinger operator
,” Commun. Math. Phys.
155
, 415
–428
(1993
).17.
Raikov
, G. D.
, “Asymptotic bounds on the number of the eigenvalues in the gaps of the 2D magnetic Schrödinger operator
,” Asymptotic Anal.
16
, 87
–98
(1998
).18.
Reed
, M.
and Simon
, B.
, Methods of Modern Mathematical Physics
(Academic
, New York, 1978
), Vols. I–IV
.19.
Robert
, D.
, “Propriétés spectrales d’opérateurs pseudo-différentiels
,” Commun. Partial Differ. Equ.
3
, 755
–826
(1978
).20.
Shirai
, S.
, “Eigenvalue asymptotics for the Schrödinger operator with steplike magnetic field and decreasing electric potential
,” Publ. Res. Inst. Math. Sci.
39
, 297
–330
(2003
).21.
Shubin
, M. A.
, Pseudo-differential Operators and Spectral Theory
, Springer Series in Soviet Mathematics
(Springer
, New York, 1987
).© 2005 American Institute of Physics.
2005
American Institute of Physics
You do not currently have access to this content.