We consider the two-dimensional Schrödinger operator, Hg(b)=2x2+[(11)(y)b(x)]2gV(x,y), where V is a non-negative scalar potential decaying at infinity like (1+x+y)m, and (0,b(x)) is a magnetic vector potential. Here, b is of the form b(x)=0xB(t)dt and the magnetic field B is assumed to be positive, bounded, and monotonically increasing on R (the Iwatsuka model). Following the argument as in Refs. 15, 16, and 17 [Raikov, G. D., Lett. Math. Phys., 21, 41–49 (1991); Raikov, G. D, Commun. Math. Phys., 155, 415–428 (1993); Raikov, G. D. Asymptotic Anal., 16, 87–89 (1998)], we obtain the asymptotics of the number of discrete spectra of Hg(b) crossing a real number λ in the gap of the essential spectrum as the coupling constant g tends to ±, respectively.

1.
Alama
,
S.
,
Deift
,
P. A.
, and
Hempel
,
R.
, “
Eigenvalue branches of the Schrödinger operator HλW in a gap of σ(H)
,”
Commun. Math. Phys.
121
,
291
321
(
1989
).
2.
Avron
,
J.
,
Herbst
,
I.
, and
Simon
,
B.
, “
Schrödinger operators with magnetic fields I. General interactions
,”
Duke Math. J.
45
,
847
883
(
1978
).
3.
Beals
,
R.
, “
A general calculus of pseudodifferential operators
,”
Duke Math. J.
42
,
1
42
(
1975
).
4.
Birman
,
M. S.
, “
Discrete spectrum in the gaps of a continuous one for perturbations with large coupling constant
,”
Adv. Sov. Math.
7
,
57
73
(
1991
).
5.
Colin de Verdiere
,
Y.
, “
L’asymptotique de Weyl pour les bouteilles magnétiques
,”
Commun. Math. Phys.
105
,
327
335
(
1986
).
6.
Cycon
,
H. L.
,
Froese
,
R. G.
,
Kirsch
,
W.
, and
Simon
,
B.
,
Schrödinger Operators
(
Springer-Verlag
, New York,
1987
).
7.
Dauge
,
M.
and
Robert
,
D.
, “
Weyl’s formula for a class of pseudodifferential operators with negative order on L2(Rn)
,”
Lect. Notes Math.
1256
,
91
122
(
1987
).
8.
Exner
,
P.
and
Kovařik
,
H.
, “
Magnetic strip waveguides
,”
J. Phys. A
33
,
3297
3311
(
2000
).
9.
Hempel
,
R.
and
Levendorskiĭ
,
S. Z.
, “
On the eigenvalues in gaps for perturbed magnetic Schrödinger operators
,”
J. Math. Phys.
39
,
63
78
(
1998
).
10.
Hörmander
,
L.
, “
The Weyl calculus of pseudo-differential operators
,”
Commun. Pure Appl. Math.
32
,
359
443
(
1979
).
11.
Iwatsuka
,
A.
, “
Examples of absolutely continuous Schrödinger operators in magnetic fields
,”
Publ. Res. Inst. Math. Sci.
21
,
385
401
(
1985
).
12.
Levendorskiĭ
,
S. L.
, “
Lower bounds for the number of eigenvalue branches for the Schrödinger operator HλW in a gap of H: the case of indefinite W
,”
Commun. Partial Differ. Equ.
20
,
827
854
(
1995
).
13.
Levendorskiĭ
,
S. L.
, “
The asymptotics for the number of eigenvalue branches for the magnetic Schrödinger operator HλW in a gap of H
,”
Math. Z.
223
,
609
625
(
1996
).
14.
Mantoiu
,
M.
and
Purice
,
R.
, “
Some propagation properties of the Iwatsuka model
,”
Commun. Math. Phys.
188
,
691
708
(
1997
).
15.
Raikov
,
G. D.
, “
Strong electric field eigenvalue asymptotics for the Schrödinger operator with electromagnetic potential
,”
Lett. Math. Phys.
21
,
41
49
(
1991
).
16.
Raikov
,
G. D.
, “
Strong-electric-field eigenvalue asymptotics for the perturbed magnetic Schrödinger operator
,”
Commun. Math. Phys.
155
,
415
428
(
1993
).
17.
Raikov
,
G. D.
, “
Asymptotic bounds on the number of the eigenvalues in the gaps of the 2D magnetic Schrödinger operator
,”
Asymptotic Anal.
16
,
87
98
(
1998
).
18.
Reed
,
M.
and
Simon
,
B.
,
Methods of Modern Mathematical Physics
(
Academic
, New York,
1978
), Vols.
I–IV
.
19.
Robert
,
D.
, “
Propriétés spectrales d’opérateurs pseudo-différentiels
,”
Commun. Partial Differ. Equ.
3
,
755
826
(
1978
).
20.
Shirai
,
S.
, “
Eigenvalue asymptotics for the Schrödinger operator with steplike magnetic field and decreasing electric potential
,”
Publ. Res. Inst. Math. Sci.
39
,
297
330
(
2003
).
21.
Shubin
,
M. A.
,
Pseudo-differential Operators and Spectral Theory
,
Springer Series in Soviet Mathematics
(
Springer
, New York,
1987
).
You do not currently have access to this content.