In the Mandelstam–Tamm version of the time-energy uncertainty principle Δt denotes the infimum of time intervals that elapse before the change in the mean of any observable has the same magnitude as its standard deviation. We clarify this interpretation, and show that the infimum is achieved for certain observables and thus that this famous inequality is actually an equality.

1.
A.
Messiah
,
Quantum Mechanics
(
North-Holland
, Amsterdam,
1961
), Vol.
1
.
2.
G. R.
Allcock
,
Ann. Phys. (N.Y.)
53
,
253
(
1969
).
3.
G. R.
Allcock
,
Ann. Phys. (N.Y.)
53
,
286
(
1969
).
4.
G. R.
Allcock
,
Ann. Phys. (N.Y.)
53
,
311
(
1969
).
5.
E. P.
Wigner
, in
Aspects of Quantum Theory
, edited by
A.
Salam
and
E. P.
Wigner
(
Cambridge University Press
, Cambridge, MA,
1972
), p.
237
.
6.
7.
P.
Busch
,
M.
Grabowski
, and
P. J.
Lahti
,
Phys. Lett. A
191
,
357
(
1994
).
8.
P.
Pfeifer
and
J.
Fröhlich
,
Rev. Mod. Phys.
57
,
759
(
1995
).
9.
L. I.
Mandelstam
and
I. E.
Tamm
,
Izv. Akad. Nauk SSSR, Ser. Fiz.
9
,
122
(
1945
).
10.
C. W.
Helstrom
,
Quantum Detection and Estimation Theory
(
Academic
, New York,
1976
).
11.
A. S.
Holevo
,
Probabilistic and Statistical Aspects of Quantum Theory
(
North-Holland
, Amsterdam,
1982
).
12.
A.
Fujiwara
and
H.
Nagaoka
,
Phys. Lett. A
201
,
119
(
1995
).
13.
P.
Busch
, in
Time in Quantum Mechanics
, edited by
J. G.
Muga
,
R.
Sala Mayato
, and
I. L.
Equsquiza
,
Lecture Notes in Physics New Series M
(
Springer-Verlag Telos
, New York,
2002
), pp.
69
98
.
14.
A. D.
Parks
,
J. Phys. A
33
,
2555
(
2000
).
You do not currently have access to this content.