The derivation of a Lagrangian invariant so-called spirality is reviewed through the Lagrangian coordinates. The value of the spirality is fixed up to a gauge transformation. The helicity conservation follows directly from this invariant. Among all ideal flows with zero helicity in a domain of flow frozen into the fluid motion, a special class is introduced. This special topological class has the possibility to transform its spirality to be identically zero everywhere in the domain. For those simply connected domains of motion, a necessary and a sufficient condition is presented for these zero spirality flows.

1.
Arnold
,
V. I.
,
1974
(in Russian), English translation as “
The asymptotic Hopf invariant and its applications
,”
Sel. Math. Sov.
5
,
327
342
(
1986
).
2.
Arnold
,
V. I.
,
Geometrical Methods in the Theory of Ordinary Differential Equations
, translated from Russian to English by
J.
Szücs
(
Springer
, New York,
1998
).
3.
Arnold
,
V. I.
and
Khesin
,
B. A.
,
Topological Methods in Hydrodynamics
(
Springer
, New York,
1998
).
4.
Berger
,
M. A.
and
Field
,
G. B.
, “
The topological properties magnetic helicity
,”
J. Fluid Mech.
147
,
133
148
(
1984
).
5.
Cantarella
,
J.
,
Deturck
,
D.
, and
Gluck
,
H.
, “
The Biot-Savart 2001 operator for application to knot theory, fluid dynamics, and plasma physics
,”
J. Math. Phys.
42
,
876
904
(
2001
).
6.
Cantarella
,
J.
,
DeTurck
,
D.
, and
Gluck
,
H.
, “
Vector calculus and the topology of domains in 3-space
,”
Am. Math. Monthly
109
,
409
442
(
2002
).
7.
Cantarella
,
J.
,
DeTurck
,
D.
,
Gluck
,
H.
, and
Teytel
,
M.
, “
Isoperimetric problems for the helicity of vector fields and the Biot-Savart and curl operators
,”
J. Math. Phys.
41
,
5615
5641
(
2000
).
8.
Chui
,
A. Y. K.
and
Moffatt
,
H. K
, “
The energy and helicity of knotted magnetic flux tubes
,”
Proc. R. Soc. London, Ser. A
451
,
609
629
(
1995
).
9.
Eshraghi
,
H.
, “
On the vortex dynamics in fully relativistic plasmas
,”
Phys. Plasmas
10
,
3577
3583
(
2003
).
10.
Freedman
,
M.
and
He
,
Z.-X.
, “
Divergence-free fields: Energy and asymptotic crossing number
,”
Ann. Math.
134
,
189
229
(
1991
).
11.
Gallavotti
,
G.
,
Foundations of Fluid Dynamics
(
Springer
, Berlin,
2002
).
12.
Kuznetsov
,
E. A.
, “
Vortex line representation for flows of ideal viscous fluids
,”
JETP Lett.
76
,
346
350
(
2002
).
13.
Kuznetsov
,
E. K.
and
Ruban
,
V.
, “
Hamiltonian dynamics of vortex lines in hydrodynamic-type systems
,”
JETP Lett.
67
,
1076
1081
(
1998
).
14.
Kuznetsov
,
E. K.
and
Ruban
,
V.
, “
Hamiltonian dynamics of vortex and magnetic lines in hydrodynamic type systems
,”
Phys. Rev. E
61
,
831
–841 (
2000
).
15.
Lamb
,
H.
,
Hydrodynamics
(
Cambridge University Press
, Cambridge,
1932
).
16.
Laurence
,
P.
and
Avellaneda
,
M.
, “
On Woltjer’s variational principle for force-free fields
,”
J. Math. Phys.
32
,
1240
1253
(
1991
).
17.
Marchioro
,
C.
and
Pulvirenti
,
M.
,
Mathematical Theory of Incompressible Nonviscous Fluids
(
Springer
, New York,
1994
).
18.
Moffatt
,
H. K.
, “
The degree of knottedness of tangled vortex lines
,”
J. Fluid Mech.
35
,
117
129
(
1969
).
19.
Moffatt
,
H. K.
, “
The topological (as opposed to the analytical) approach to fluid and plasma flow problems
,” in
Topological Fluid Mechanics
, edited by
H. K.
Moffatt
and
A.
Tsinober
,
Proceedings of the IUTAM Symposium
, Cambridge, 13–18 August 1989 (
Cambridge University Press
, Cambridge,
1990
) pp.
1
10
.
20.
Moffatt
,
H. K.
and
Ricca
,
R.
, “
Helicity and the Calugareanu invariant
,”
Proc. R. Soc. London, Ser. A
439
,
411
429
(
1992
).
21.
Ricca
,
R.
and
Moffatt
,
H. K.
, “
The helicity of a knotted vortex filament
,” in
Topological Aspects of the Dynamics of Fluids and Plasmas
, edited by
H. K.
Moffatt
,
G. M.
Zaslavsky
,
P.
Comte
, and
M.
Tabor
(
Kluwer Academic
, Dordrecht,
1992
), pp.
225
236
.
22.
Russo
,
G.
and
Smereca
,
P.
, “
Impulse formulation of the Euler equations: General properties and numerical methods
,”
J. Fluid Mech.
391
,
189
209
(
1999
).
23.
Sagdeef
,
R. Z.
,
Tur
,
A. V.
, and
Yanovsky
,
V. V.
, “
Construction of frozen-in integrals, Lagrangian and topological invariants in hydrodynamical models
,” in
Topological Fluid Mechanics
, edited by
H. K.
Moffatt
and
A.
Tsinober
,
Proceedings of the IUTAM Symposium
, Cambridge, 13–18 August 1989 (
Cambridge University Press
, Cambridge,
1990
), pp.
421
428
.
24.
Salmon
,
R.
, “
Hamiltonian Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
20
,
225
256
(
1988
).
25.
Schwarz
,
G.
,
Hodge Decomposition: A Method for Solving Boundary Value Problems
,
Lecture Notes in Mathematics
, No. 1607 (
Springer
, Berlin,
1995
).
26.
Tagor
,
M.
and
Treve
,
Y. M.
(editors), “
Mathematical Methods in Hydrodynamics and integrability in Dynamical Systems
,”
AIP Conf. Proc.
88
,
127
(
1982
).
27.
Troshkin
,
O. V.
,
Nontraditional Methods in Mathematical Hydrodynamics
, translated from Russian (
American Mathematical Society
, Providence,
1995
).
28.
Tur
,
A. V.
and
Yanovsky
,
V. V.
, “
Invariants in dissipationless hydrodynamic media
,”
J. Fluid Mech.
248
,
67
(
1993
).
29.
Yakubovich
,
E. I.
and
Zenkovich
,
D. A.
, “
Matrix approach to Lagrangian fluid dynamics
,”
J. Fluid Mech.
443
,
167
196
(
2001
).
30.
Yang
,
K.
,
Exterior Differential Systems and Equivalence Problems
(
Kluwer Academic
, Dordrecht,
1992
).
31.
Yoshida
,
Z.
and
Giga
,
Y.
, “
Remarks on spectra of operator rot
,”
Math. Z.
204
,
235
245
(
1990
).
32.
Zakharov
,
V. E.
and
Kuznetsov
,
E. A.
, “
Hamiltonian formalism for nonlinear waves
,”
Phys. Usp.
40
,
1087
1116
(
1997
).
You do not currently have access to this content.