The derivation of a Lagrangian invariant so-called spirality is reviewed through the Lagrangian coordinates. The value of the spirality is fixed up to a gauge transformation. The helicity conservation follows directly from this invariant. Among all ideal flows with zero helicity in a domain of flow frozen into the fluid motion, a special class is introduced. This special topological class has the possibility to transform its spirality to be identically zero everywhere in the domain. For those simply connected domains of motion, a necessary and a sufficient condition is presented for these zero spirality flows.
REFERENCES
1.
Arnold
, V. I.
, 1974
(in Russian), English translation as “The asymptotic Hopf invariant and its applications
,” Sel. Math. Sov.
5
, 327
–342
(1986
).2.
Arnold
, V. I.
, Geometrical Methods in the Theory of Ordinary Differential Equations
, translated from Russian to English by J.
Szücs
(Springer
, New York, 1998
).3.
Arnold
, V. I.
and Khesin
, B. A.
, Topological Methods in Hydrodynamics
(Springer
, New York, 1998
).4.
Berger
, M. A.
and Field
, G. B.
, “The topological properties magnetic helicity
,” J. Fluid Mech.
147
, 133
–148
(1984
).5.
Cantarella
, J.
, Deturck
, D.
, and Gluck
, H.
, “The Biot-Savart 2001 operator for application to knot theory, fluid dynamics, and plasma physics
,” J. Math. Phys.
42
, 876
–904
(2001
).6.
Cantarella
, J.
, DeTurck
, D.
, and Gluck
, H.
, “Vector calculus and the topology of domains in 3-space
,” Am. Math. Monthly
109
, 409
–442
(2002
).7.
Cantarella
, J.
, DeTurck
, D.
, Gluck
, H.
, and Teytel
, M.
, “Isoperimetric problems for the helicity of vector fields and the Biot-Savart and curl operators
,” J. Math. Phys.
41
, 5615
–5641
(2000
).8.
Chui
, A. Y. K.
and Moffatt
, H. K
, “The energy and helicity of knotted magnetic flux tubes
,” Proc. R. Soc. London, Ser. A
451
, 609
–629
(1995
).9.
Eshraghi
, H.
, “On the vortex dynamics in fully relativistic plasmas
,” Phys. Plasmas
10
, 3577
–3583
(2003
).10.
Freedman
, M.
and He
, Z.-X.
, “Divergence-free fields: Energy and asymptotic crossing number
,” Ann. Math.
134
, 189
–229
(1991
).11.
Gallavotti
, G.
, Foundations of Fluid Dynamics
(Springer
, Berlin, 2002
).12.
Kuznetsov
, E. A.
, “Vortex line representation for flows of ideal viscous fluids
,” JETP Lett.
76
, 346
–350
(2002
).13.
Kuznetsov
, E. K.
and Ruban
, V.
, “Hamiltonian dynamics of vortex lines in hydrodynamic-type systems
,” JETP Lett.
67
, 1076
–1081
(1998
).14.
Kuznetsov
, E. K.
and Ruban
, V.
, “Hamiltonian dynamics of vortex and magnetic lines in hydrodynamic type systems
,” Phys. Rev. E
61
, 831
–841 (2000
).15.
16.
Laurence
, P.
and Avellaneda
, M.
, “On Woltjer’s variational principle for force-free fields
,” J. Math. Phys.
32
, 1240
–1253
(1991
).17.
Marchioro
, C.
and Pulvirenti
, M.
, Mathematical Theory of Incompressible Nonviscous Fluids
(Springer
, New York, 1994
).18.
Moffatt
, H. K.
, “The degree of knottedness of tangled vortex lines
,” J. Fluid Mech.
35
, 117
–129
(1969
).19.
Moffatt
, H. K.
, “The topological (as opposed to the analytical) approach to fluid and plasma flow problems
,” in Topological Fluid Mechanics
, edited by H. K.
Moffatt
and A.
Tsinober
, Proceedings of the IUTAM Symposium
, Cambridge, 13–18 August 1989 (Cambridge University Press
, Cambridge, 1990
) pp. 1
–10
.20.
Moffatt
, H. K.
and Ricca
, R.
, “Helicity and the Calugareanu invariant
,” Proc. R. Soc. London, Ser. A
439
, 411
–429
(1992
).21.
Ricca
, R.
and Moffatt
, H. K.
, “The helicity of a knotted vortex filament
,” in Topological Aspects of the Dynamics of Fluids and Plasmas
, edited by H. K.
Moffatt
, G. M.
Zaslavsky
, P.
Comte
, and M.
Tabor
(Kluwer Academic
, Dordrecht, 1992
), pp. 225
–236
.22.
Russo
, G.
and Smereca
, P.
, “Impulse formulation of the Euler equations: General properties and numerical methods
,” J. Fluid Mech.
391
, 189
–209
(1999
).23.
Sagdeef
, R. Z.
, Tur
, A. V.
, and Yanovsky
, V. V.
, “Construction of frozen-in integrals, Lagrangian and topological invariants in hydrodynamical models
,” in Topological Fluid Mechanics
, edited by H. K.
Moffatt
and A.
Tsinober
, Proceedings of the IUTAM Symposium
, Cambridge, 13–18 August 1989 (Cambridge University Press
, Cambridge, 1990
), pp. 421
–428
.24.
Salmon
, R.
, “Hamiltonian Fluid Mechanics
,” Annu. Rev. Fluid Mech.
20
, 225
–256
(1988
).25.
Schwarz
, G.
, Hodge Decomposition: A Method for Solving Boundary Value Problems
, Lecture Notes in Mathematics
, No. 1607 (Springer
, Berlin, 1995
).26.
Tagor
, M.
and Treve
, Y. M.
(editors), “Mathematical Methods in Hydrodynamics and integrability in Dynamical Systems
,” AIP Conf. Proc.
88
, 127
(1982
).27.
Troshkin
, O. V.
, Nontraditional Methods in Mathematical Hydrodynamics
, translated from Russian (American Mathematical Society
, Providence, 1995
).28.
Tur
, A. V.
and Yanovsky
, V. V.
, “Invariants in dissipationless hydrodynamic media
,” J. Fluid Mech.
248
, 67
(1993
).29.
Yakubovich
, E. I.
and Zenkovich
, D. A.
, “Matrix approach to Lagrangian fluid dynamics
,” J. Fluid Mech.
443
, 167
–196
(2001
).30.
Yang
, K.
, Exterior Differential Systems and Equivalence Problems
(Kluwer Academic
, Dordrecht, 1992
).31.
Yoshida
, Z.
and Giga
, Y.
, “Remarks on spectra of operator rot
,” Math. Z.
204
, 235
–245
(1990
).32.
Zakharov
, V. E.
and Kuznetsov
, E. A.
, “Hamiltonian formalism for nonlinear waves
,” Phys. Usp.
40
, 1087
–1116
(1997
).© 2005 American Institute of Physics.
2005
American Institute of Physics
You do not currently have access to this content.