In this paper we study equations of magnetic hydrodynamics with a stress tensor. We interpret this system as the generalized Euler equation associated with an Abelian extension of the Lie algebra of vector fields with a nontrivial 2-cocycle. We use the Lie algebra approach to prove the energy conservation law and the conservation of cross-helicity.
REFERENCES
1.
Adams
, R. A.
, Sobolev Spaces, Pure and Applied Mathematics
(Academic
, New York, 1975
), Vol. 65
.2.
Arnold
, V.
, “Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits
,” Ann. Inst. Fourier
16
, 319
–361
(1966
).3.
Arnold
, V. I.
and Khesin
, B. A.
, Topological Methods in Hydrodynamics
, Applied Mathematical Sciences, Vol. 125
(Springer-Verlag
, New York, 1998
).4.
Batchelor
, G. K.
, An Introduction to Fluid Dynamics
(Cambridge University Press
, Cambridge, 1967
).5.
Berman
, S.
and Billig
, Y.
, “Irreducible representations for toroidal Lie algebras
,” J. Algebra
221
, 188
–231
(1999
).6.
Billig
, Y.
, “Principal vertex operator representations for toroidal Lie algebras
,” J. Math. Phys.
39
, 3844
–3864
(1998
).7.
8.
Billig
, Y.
, “Abelian extensions of the group of diffeomorphisms of a torus
,” Lett. Math. Phys.
64
, 155
–169
(2003
).9.
Biskamp
, D.
, Nonlinear Magnetohydrodynamics
(Cambridge University Press
, Cambridge, 1993
).10.
Ebin
, D.
and Marsden
, J.
, “Groups of diffeomorphisms and the motion of an incompressible fluid
,” Ann. Math.
92
, 102
–163
(1970
).11.
Eswara Rao
, S.
and Moody
, R. V.
, “Vertex representations for -toroidal Lie algebras and a generalization of the Virasoro algebra
,” Commun. Math. Phys.
159
, 239
–264
(1994
).12.
Fuks
, D. B.
, Cohomology of Infinite-Dimensional Lie Algebras
(Consultants Bureau
, New York, 1986
).13.
Gelfand
, I. M.
and Fuks
, D. B.
, “Cohomology of Lie algebras of vector fields with nontrivial coefficients
,” Funkc. Anal. Priloz.
4
, 10
–25
(1970
).14.
Kadomtsev
, B. B.
, Tokamak Plasma: A Complex Physical System
(Institute of Physics
, Bristol, 1992
).15.
Larsson
, T. A.
, “Lowest-energy representations of non-centrally extended diffeomorphism algebras
,” Commun. Math. Phys.
201
, 461
–470
, 1999
.16.
Marsden
, J.
and Ratiu
, T.
, Introduction to Mechanics and Symmetry
, Texts in Appl. Math. (Springer-Verlag
, New York, 1994
), Vol. 17
.17.
Marsden
, J.
, Ratiu
, T.
, and Weinstein
, A.
, “Semidirect products and reduction in mechanics
,” Trans. Am. Math. Soc.
281
, 147
–177
(1984
).18.
Moffatt
, H. K.
, “Vortex- and magneto-dynamics—A topological perspective
,” Mathematical Physics 2000
(Imperial College Press
, London, 2000
), pp. 170
–182
.19.
Moffatt
, H. K.
, “Some developments in the theory of turbulence
,” J. Fluid Mech.
106
, 27
–47
(1981
).20.
Moreau
, R.
, Magnetohydrodynamics, Fluid Mechanics and its Applications
(Kluwer Academic
, Dodrecht, 1990
), Vol. 3
.21.
Ovsienko
, V. Yu.
and Khesin
, B. A.
, “The super Korteweg–de Vries equation as an Euler equation
,” Funkc. Anal. Priloz.
21
, 81
–82
(1987
).22.
Priest
, E. R.
, Solar Magnetohydrodynamics, Geophysics and Astrophysics Monographs
(D. Reidel
, Dordrecht, 1982
), Vol. 21
.23.
24.
Višik
, S. M.
and Dolžanskiĭ
, F. V.
, “Analogs of the Euler-Lagrange equations and magnetohydrodynamics connected with Lie groups
,” Dokl. Akad. Nauk SSSR
19
, 149
–153
(1978
).© 2005 American Institute of Physics.
2005
American Institute of Physics
You do not currently have access to this content.