The theory of the separation of variables for the null Hamilton–Jacobi equation is systematically revisited and based on Levi–Civita separability conditions with Lagrangian multipliers. The separation of the null equation is shown to be equivalent to the ordinary separation of the image of the original Hamiltonian under a generalized Jacobi–Maupertuis transformation. The general results are applied to the special but fundamental case of the orthogonal separation of a natural Hamiltonian with a fixed value of the energy. The separation is then related to conditions which extend those of Stäckel and Kalnins and Miller (for the null geodesic case) and it is characterized by the existence of conformal Killing two-tensors of special kind.
REFERENCES
1.
Arnold
, V. I.
, “Ordinary differential equations
,” Springer Textbooks
, 3rd ed. (Springer-Verlag
, Berlin, 1992
).2.
Benenti
, S.
, “Strutture di separabilità su varietà riemanniane
,” Rend. Semin. Mat. Torino
34
, 431
–463
(1976
).3.
Benenti
, S.
, “Separation of variables in the geodesic HJE
,” Prog. Math.
9
, 1
–36
(1991
).4.
Benenti
, S.
, “Orthogonal separable dynamical systems
,” in Differential Geometry and Its Applications
, Vol. I
, Proceedings of the 5th International Conference on Differential Geometry and Its Applications, Silesian University at Opava, August 24–28, 1992
, edited by O.
Kowalski
and D.
Krupka
, 1993
, pp. 163
–184
. Web ed.: ELibEMS, http:// www.emis.de/proceedings/5.
Benenti
, S.
, “Connections and Hamiltonian mechanics
,” Proceedings of the International Conference in honour of A. Lichnerowicz
, in Gravitation, Electromagnetism and Geometrical Structures
, edited by G.
Ferrarese
(Pitagora Editrice
, Bologna, 1996
), pp. 185
–206
.6.
Benenti
, S.
, Chanu
, C.
, and Rastelli
, G.
, “The super-separability of the three-body inverse-square Calogero system
,” J. Math. Phys.
41
, 4654
–4678
(2000
).7.
Benenti
, S.
, Chanu
, C.
, Rastelli
, G.
, “Remarks on the connection between the additive separation of the HJE and the multiplicative separation of the Schrödinger equations. I. The completeness and Robertson conditions
,” J. Math. Phys.
43
, 5183
–5222
(2002
).8.
Bôcher
, M.
, Über die Reihenentwickelungen der Potentialtheorie
(Teubner
, Leipzig, 1894
).9.
Bolsinov
, A. V.
, Kozlov
, V. V.
, and Fomenko
, A. T.
, “The Maupertuis principle and geodesic flows on a sphere that arise from integrable cases of the dynamics of a rigid body
,” Russ. Math. Surveys
59
, 473
–501
(1995
).10.
Boyer
, C. P.
, Kalnins
, E. G.
, and Miller
, W.
, Jr., “-separable coordinates for three-dimensional complex Riemannian spaces
,” Trans. Am. Math. Soc.
242
, 355
–376
(1978
).11.
Carter
, B.
, “Hamilton–Jacobi and Schrödinger separable solutions of Einstein’s equations
,” Commun. Math. Phys.
10
, 280
–310
(1968
).12.
Coolidge
, J. L.
, A Treatise on the Circle and the Sphere
(Oxford University Press
, London, (1916
).13.
Darboux
, G.
, Sur une Classe Remarquable de Courbes et de Surfaces Algébriques et sur la Théorie des Imaginaires
(Gauthier-Villars
, Paris, (1873
).14.
Eisenhart
, L. P.
, Riemannian geometry
, 2nd ed. (Princeton University Press
, Princeton, NJ, 1949
).15.
Forbat
, N.
, “Sur la séparation des variables dans l’équation de Hamilton–Jacobi d’un système non conservatif
,” Bull. Cl. Sci., Acad. R. Belg.
30
, 462
–473
(1944
).16.
17.
Kalnins
, E. G.
, “Separation of variables for Riemannian spaces of constant curvature
,” Pitman Monographs and Surveys in P. A. Math. 28
(Longman Scientific & Technical
, Essex, England, 1986
).18.
Kalnins
, E. G.
, and Miller
, W.
, Jr., “Killing tensors and variable separation for the Hamilton-Jacobi and Helmholtz equations
,” SIAM J. Math. Anal.
11
, 1011
–1026
(1980
).19.
Kalnins
, E. G.
, and Miller
, W.
, Jr., “Nonorthogonal -separable coordinates for four-dimensional complex Riemannian spaces
,” J. Math. Phys.
22
, 42
–50
(1981
).20.
Kalnins
, E. G.
, and Miller
, W.
, Jr., “Conformal Killing tensors and variable separation for HJEs
,” SIAM J. Math. Anal.
14
, 126
–137
(1983
).21.
Kalnins
, E. G.
, and Miller
, W.
, Jr., “Intrinsic characterization of variable separation for the partial differential equations of mechanics
,” Proceedings of IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, Torino 1982
, Atti Accad. Sci. Torino, Cl. Sci. Fis., Mat. Nat.
113
, 511
–534
(1983
).22.
Kalnins
, E. G.
, and Miller
, W.
, Jr., “-separation of variables for the time dependent Hamilton–Jacobi and Schrödinger equations
, ” J. Math. Phys.
28
, 1005
–1015
(1987
).23.
24.
Levi-Civita
, T.
, “Sulla integrazione della equazione di Hamilton–Jacobi per separazione di variabili
,” Math. Ann.
59
, 3383
–3397
(1904
).25.
McLenaghan
, R. G.
, and Smirnov
, R. G.
, “A class of Liouville-integrable Hamiltonian systems with two degrees of freedom
,” J. Math. Phys.
41
, 6879
–6889
(2000
).26.
Miller
, W.
, Jr., “The technique of variable separation for partial differential equations
,” in Nonlinear Phenomena
, edited by K. B.
Wolf
, Lecture Notes in Physics
189
(Springer
, New York, 1983
), pp. 184
–208
.27.
Moon
, P.
, and Spencer
, D. E.
, Field Theory Handbook
(Springer-Verlag
, Berlin, 1961
).28.
Pucacco
, G.
, and Rosquist
, G.
, “On separable systems in two-dimensions
,” in Symmetry and Perturbation Theory
(Cala Gonone, 2002
) (World Scientific Publishing
, Singapore, 2002
), pp. 196
–209
.29.
Rani
, R.
, Edgar
, S. B.
, and Barnes
, A.
“Killing tensors and conformal Killing tensors from conformal Killing vectors
,”Class. Quantum Grav.
20
, 1923
–1942
(2003
).30.
Rosquist
, K.
, and Pucacco
, G.
, “Invariants at fixed and arbitrary energy. A unified geometric approach
,” J. Phys. A
28
, 3235
–3252
(1995
).31.
Selivanova
, E. N.
, “New examples of integrable conservative systems on and the case of Goryachev Chaplygin
,” Commun. Math. Phys.
207
, 641
–663
(1999
).32.
Stäckel
, P.
, Über die Integration der Hamilton–Jacobischen Differentialgleichung mittels Separation der Variabelen
(Habilitationsschrift
, Halle, 1891
).33.
Tsiganov
, A. V.
, “The Maupertuis principle and canonical transformations of the extended phase space
,” J. Nonlinear Math. Phys.
8
, 157
–182
(2001
).34.
Weir
, G. J.
, “Conformal Killing tensors in reducible spaces
,” J. Math. Phys.
18
, 1782
–1787
(1977
).© 2005 American Institute of Physics.
2005
American Institute of Physics
You do not currently have access to this content.