We construct the local and nonlocal conserved densities for the Camassa–Holm equation by solving a suitable Riccati equation. We also define a Kadomtsev–Petviashvili extension for the local Camassa–Holm hierarchy.

1.
Camassa
R.
, and
Holm
,
D. D.
, “
An integrable shallow water equation with peaked solitons
,”
Phys. Rev. Lett.
71
,
1661
1664
(
1993
).
2.
Falqui
,
G.
,
Magri
,
F.
, and
Pedroni
,
M.
, “
Bihamiltonian geometry, Darboux coverings and linearization of the KP hierarchy
,”
Commun. Math. Phys.
197
,
303
324
(
1998
).
3.
Hunter
,
J.
, and
Saxton
,
R.
, “
Dynamics of director fields
,”
SIAM J. Appl. Math.
51
,
1498
1521
(
1991
).
4.
Khesin
,
B.
and
Misiolek
,
G.
, “
Euler equations on homogeneous spaces and Virasoro orbits
,”
Adv. Math.
176
,
116
144
(
2003
).
5.
Kruskal
,
M.
, “
Nonlinear wave equations
,” in
Dynamical Systems, Theory and Applications
, edited by
J.
Moser
,
Lecture Notes in Physics 38
(
Springer
, Heidelberg,
1975
), pp.
310
354
.
6.
Lenells
,
J.
, “
Conservation laws of the Camassa–Holm equation
,”
J. Phys. A
38
,
869
880
(
2005
).
7.
Lorenzoni
,
P.
, and
Pedroni
,
M.
, “
On the bi—Hamiltonian structures of the Camassa–Holm and Harry Dym equations
,”
Int. Math. Res. Notices
75
,
4019
4029
(
2004
).
8.
Magri
,
F.
,
Casati
,
P.
,
Falqui
,
G.
, and
Pedroni
,
M.
, “
Eight lectures on integrable systems
,” in
Integrability of Nonlinear Systems
, 2nd ed., edited by
Y.
Kosmann-Schwarzbach
 et al.,
Lecture Notes in Physics 638
(
Springer
, New York,
2004
), pp.
209
250
.
9.
H.
McKean
, “
The Liouville correspondence between the Korteweg-de Vries and the Camassa–Holm hierarchies
,”
Commun. Pure Appl. Math.
56
,
998
1015
(
2003
).
10.
Oevel
,
W.
, and
Carillo
,
S.
, “
Squared eigenfunction symmetries for soliton equations. I
,”
J. Math. Anal. Appl.
217
,
161
178
(
1998
);
Oevel
,
W.
and
Carillo
,
S.
, “
Squared eigenfunction symmetries for soliton equations. II
,”
J. Math. Anal. Appl.
217
,
179
199
(
1988
).
11.
Pedroni
,
M.
,
Sciacca
,
V.
, and
Zubelli
,
J. P.
, “
On the bi-Hamiltonian theory for the Harry Dym equation
,”
Theor. Math. Phys.
133
,
1583
1595
(
2002
).
You do not currently have access to this content.