Starting from vector fields that preserve a differential form on a Riemann sphere with Grassmann variables, one can construct a superconformal algebra by considering central extensions of the algebra of vector fields. In this paper, the N=4 case is analyzed closely, where the presence of weight zero operators in the field theory forces the introduction of noncentral extensions. How this modifies the existing field theory, representation theory, and Gelfand–Fuchs constructions is discussed. It is also discussed how graded Riemann sphere geometry can be used to give a geometrical description of the central charge in the N=1 theory.

1.
Flohr
,
M.
, “
Bits and pieces in logarithmic conformal field theory
,”
Int. J. Mod. Phys. A
18
,
4497
4592
(
2003
).
2.
Flohr
,
M.
, “
Ghost system revisited: Modified Virasoro generators and logarithmic conformal field theories
,”
J. High Energy Phys.
1
,
20
38
(
2003
).
3.
Goddard
,
P.
,
Kent
,
A.
, and
Olive
,
D.
, “
Virasoro algebras and coset space models
,”
Phys. Lett.
152B
,
88
102
(
1985
).
4.
Grozman
,
P.
,
Leites
,
D.
, and
Shchepochkina
,
I.
, “
Lie superalgebras of string theories
,” hep-th∕9702120.
5.
Ivanov
,
E.
,
Krivonos
,
S.
, and
Leviant
,
V.
, “
N=3 and N=4 superconformal WZNW sigma models in superspace II—the N=4 case
,”
Int. J. Mod. Phys. A
7
,
287
316
(
1992
).
6.
Kac
,
V.
and
van de Leur
,
J.
, “
On classification of superconformal algebras
,” Proceedings, strings,
1988
.
7.
Nagi
,
J.
, “
Superconformal primary fields on a graded Riemann sphere
,”
J. Math. Phys.
45
,
2492
2514
(
2004
).
8.
Schoutens
,
K.
, “
O(N)-extended superconformal field theory in superspace
,”
Nucl. Phys. B
295
,
634
652
(
1988
).
9.
Nelson
,
P.
, “
Lectures on supermanifolds and strings
,” TASI 88:0997-1074 (QCD161:T45:1988:V.2) (
World Scientific
, Teaneck, N.J.,
1989
).
10.
Witten
,
E.
, “
Quantum field theory, Grassmannians, and algebraic curves
,”
Commun. Math. Phys.
113
,
529
(
1988
).
11.

If U(z)0 is to be regular at z=0, then V0 must annihilate ∣0⟩.

12.

For example, in the N=0 case (1πi)0dzX(i)T=(12πi)0dzl(i)L(z). The vector ln is parametrized by l(i)=zn+1. Then (12πi)0dzl(i)L(z)=(12πi)0zn+1mLmzm2=Ln.

13.

More generally, (1)ΠiX(i)ΠiX(i)=ni{0,1}(1)ΠiX(i)niΠiX(i)ni.

You do not currently have access to this content.