We consider the Bogomol’nyi equations of the Abelian Chern–Simons–Higgs model with symmetry. This is a generalization of the well-known Abelian Chern–Simons–Higgs model with symmetry. We prove existence of both topological and nontopological multivortex solutions of the system on the plane.
REFERENCES
1.
Chae
, D.
and Imanuvilov
, O. Y.
, “The existence of non-topological multivortex solutions in the relativistic self-dual Chern–Simons theory
,” Commun. Math. Phys.
215
, 119
–142
(2000
).2.
Chan
, H.
, Fu
, C. C.
, and Lin
, C. S.
, “Non-topological multi-vortex solutions to the self-dual Chern–Simons–Higgs equation
,” Commun. Math. Phys.
231
, 189
–221
(2002
).3.
Gibbons
, G. W.
, Ortiz
, M. E.
, Ruiz
, F.
, and Samols
, T. M.
, “Semilocal strings and monopoles
,” Nucl. Phys. B
385
, 127
–144
(1992
).4.
Hong
, J.
, Kim
, Y.
, and Pac
, P. Y.
, “Multivortex Solutions of the Abelian Chern-Simons Higgs Theory
,” Phys. Rev. Lett.
64
, 2230
–2233 (1990
).5.
Jackiw
, R.
and Weinberg
, E. J.
, “Self-Dual Chern-Simons Vortices
,” Phys. Rev. Lett.
64
, 2234
–2237 (1990
).6.
Khare
, A.
, “Semilocal self-dual Chern–Simons vertices
,” Phys. Rev. D
46
, R2287
–R2289 (1992
).7.
Lang
, S.
, Complex Analysis
, 3rd ed., GTM series
(Springer
, Berlin, 1993
).8.
Nolasco
, M.
, “Non-topological -vortex condensates for the self-dual Chern–Simons theory
,” Commun. Pure Appl. Math.
56
, 1752
–1780
(2003
).9.
Nolasco
, M.
and Tarantello
, G.
, “Double vortex condensates in the Chern–Simons–Higgs theory
,” Calculus Var. Partial Differ. Equ.
9
, 31
–94
(1999
).10.
Spruck
, J.
and Yang
, Y.
, “The existence of nontopological solitons in the self-dual Chern–Simons theory
,” Commun. Math. Phys.
149
, 361
–376
(1992
).11.
Spruck
, J.
and Yang
, Y.
, “Topological solutions in the self-dual Chern–Simons theory: existence and approximation
,” Ann. Inst. Henri Poincare, Anal. Non Lineaire
12
, 75
–97
(1995
).12.
Tarantello
, G.
, “Multiple condensate solutions for the Chern–Simons–Higgs Theory
,” J. Math. Phys.
37
, 3769
–3796
(1996
).13.
Taubes
, C. H.
, “Arbitrary -vortex solutions to the first order Ginzburg–Landau equation
,” Commun. Math. Phys.
72
, 277
–292
(1980
).14.
Vachaspati
, T.
and Achúcarro
, A.
, “Semilocal cosmic strings
,” Phys. Rev. D
44
, 3067
–3071 (1991
).15.
Wang
, R.
, “The existence of Chern-Simons vortices
,” Commun. Math. Phys.
137
, 587
–597
(1991
).16.
Yang
, Y.
, Solitons in Field Theory and Nonlinear Analysis
(Springer-Verlag
, New York, 2001
).17.
Zeidler
, E.
, Nonlinear Functional Analysis and its Applications
(Springer-Verlag
, New York, 1985
), Vol. 1
.© 2005 American Institute of Physics.
2005
American Institute of Physics
You do not currently have access to this content.