We investigate the Green functions of some second order differential operators on with singular coefficients depending only on one coordinate . We express the Green functions by means of the Brownian motion. Applying probabilistic methods we prove that when and (here ) lie on the singular hyperplanes, then is more regular than the Green function of operators with regular coefficients.
REFERENCES
1.
J. M.
Bardeen
, P. J.
Steinhardt
, and M. S.
Turner
, Phys. Rev. D
28
, 679
(1983
).2.
P.
Szekeres
and V.
Iyer
, Phys. Rev. D
47
, 4362
(1993
);M.
Celerier
and P.
Szekeres
, Phys. Rev. D
65
, 123516
(2002
).3.
J.
Hadamard
, Lectures on Cauchy’s Problem in Linear Partial Differential Equations
(Yale U.P.
, New Haven, 1923
).4.
B. S.
DeWitt
, Phys. Rev.
162
, 1239
(1967
);B. S.
DeWitt
, Phys. Rep.
19
, 295
(1975
).5.
N.
Ikeda
and S.
Watanabe
, Stochastic Differential Equations and Diffusion Processes
(North Holland
, Amsterdam, 1981
).6.
7.
8.
9.
H.
Ezawa
, J. R.
Klauder
, and L. A.
Shepp
, J. Math. Phys.
16
, 783
(1975
).10.
11.
A. W.
Marshall
and I.
Olkin
, Inequalities: Theory of Majorization and Its Applications
(Academic
, New York, 1979
).12.
F.
Lucchin
and S.
Matarrese
, Phys. Rev. D
32
, 1316
(1985
).13.
B.
Ratra
and J. E.
Peebles
, Phys. Rev. D
37
, 3406
(1988
);B.
Ratra
, Phys. Rev. D
45
, 1913
(1992
).14.
S. A.
Fulling
, L.
Parker
, and B. L.
Hu
, Phys. Rev. D
10
, 3905
(1974
).15.
L.
Abbott
and M.
Wise
, Nucl. Phys. B
244
, 541
(1984
).16.
G.
Dvali
, G.
Gabadadze
, and M.
Porrati
, Phys. Lett. B
485
, 208
(2000
);G.
Dvali
and G.
Gabadadze
, Phys. Rev. D
63
, 065007
(2001
);L.
Randal
and R.
Sundrum
, Phys. Rev. Lett.
83
, 3370
(1999
);L.
Randal
and R.
Sundrum
, Phys. Rev. Lett.
83
, 4690
(1999
).17.
M.
Abramowitz
and I. A.
Stegun
, Handbook of Mathematical Functions
(Dover
, New York, 1965
).© 2005 American Institute of Physics.
2005
American Institute of Physics
You do not currently have access to this content.