Basic properties of von Neumann entropy such as the triangle inequality and what we call MONO–SSA are studied for CAR systems. We show that both inequalities hold for every even state by using symmetric purification which is applicable to such a state. We construct a certain class of noneven states giving examples of the nonvalidity of those inequalities.
REFERENCES
1.
Araki
, H.
and Lieb
, E. H.
, “Entropy inequalities
,” Commun. Math. Phys.
18
, 160
–170
(1970
).2.
Araki
, H.
and Moriya
, H.
, “Equilibrium statistical mechanics of fermion lattice systems
,” Rev. Math. Phys.
15
, 93
–198
(2003
).3.
Araki
, H.
and Moriya
, H.
, “Joint extension of states of subsystems for a CAR system
,” Commun. Math. Phys.
237
, 105
–122
(2003
).4.
Bratteli
, O.
and Robinson
, D. W.
, Operator Algebras and Quantum Statistical Mechanics 2
, 2nd ed. (Springer-Verlag
, Berlin, Heidelberg, New York, 1996
).5.
Lieb
, E. H.
and Ruskai
, M. B.
, “A fundamental property of quantum-mechanical entropy
,” Phys. Rev. Lett.
30
, 434
–436 (1973
).6.
Moriya
, H.
, “Strong subadditivity property of entropy in fermion systems
,” RIMS koukyu-roku
1035
, 128
–132
(1998
).7.
Moriya
, H.
, “Some aspects of quantum entanglement for CAR systems
,” Lett. Math. Phys.
60
, 109
–121
(2002
).8.
Moriya
, H.
, “Separability condition for the states of fermion lattice systems and its characterization
,” quant-ph∕0405166 (preprint).9.
Ohya
, M.
and Petz
, D.
, Quantum Entropy and Its Use
(Springer-Verlag
, Berlin, Heidelberg, New York, 1993
).10.
Powers
, R. T.
, “Representations of the canonical anticommutation relations
,” thesis, Princeton University
, 1967
.11.
Ruskai
, M. B.
, “Inequalities for quantum entropy: A review with conditions for equality
,” J. Math. Phys.
43
, 4358
–4375
(2002
).12.
Schmidt
, E.
, “Zur Theorie der linearen und nichtlinearen Integralgleichnungen
,” Math. Ann.
63
, 433
–476
(1907
).13.
Thirring
, W.
, A Course in Mathematical Physics 4. Quantum Mechanics of Large Systems
, translated by E. M. Harrell (Springer-Verlag
, New York, Wien, 1980
).14.
Uhlmann
, A.
, “The transition probability in the state space of a ∗-algebra
,” Rep. Math. Phys.
9
, 273
–277
(1976
).15.
Wehrl
, A.
, “General properties of entropy
,” Rev. Mod. Phys.
50
, 221
–260 (1978
).© 2005 American Institute of Physics.
2005
American Institute of Physics
You do not currently have access to this content.