Basic properties of von Neumann entropy such as the triangle inequality and what we call MONO–SSA are studied for CAR systems. We show that both inequalities hold for every even state by using symmetric purification which is applicable to such a state. We construct a certain class of noneven states giving examples of the nonvalidity of those inequalities.

1.
Araki
,
H.
and
Lieb
,
E. H.
, “
Entropy inequalities
,”
Commun. Math. Phys.
18
,
160
170
(
1970
).
2.
Araki
,
H.
and
Moriya
,
H.
, “
Equilibrium statistical mechanics of fermion lattice systems
,”
Rev. Math. Phys.
15
,
93
198
(
2003
).
3.
Araki
,
H.
and
Moriya
,
H.
, “
Joint extension of states of subsystems for a CAR system
,”
Commun. Math. Phys.
237
,
105
122
(
2003
).
4.
Bratteli
,
O.
and
Robinson
,
D. W.
,
Operator Algebras and Quantum Statistical Mechanics 2
, 2nd ed. (
Springer-Verlag
, Berlin, Heidelberg, New York,
1996
).
5.
Lieb
,
E. H.
and
Ruskai
,
M. B.
, “
A fundamental property of quantum-mechanical entropy
,”
Phys. Rev. Lett.
30
,
434
–436 (
1973
).
6.
Moriya
,
H.
, “
Strong subadditivity property of entropy in fermion systems
,”
RIMS koukyu-roku
1035
,
128
132
(
1998
).
7.
Moriya
,
H.
, “
Some aspects of quantum entanglement for CAR systems
,”
Lett. Math. Phys.
60
,
109
121
(
2002
).
8.
Moriya
,
H.
, “
Separability condition for the states of fermion lattice systems and its characterization
,” quant-ph∕0405166 (preprint).
9.
Ohya
,
M.
and
Petz
,
D.
,
Quantum Entropy and Its Use
(
Springer-Verlag
, Berlin, Heidelberg, New York,
1993
).
10.
Powers
,
R. T.
, “
Representations of the canonical anticommutation relations
,” thesis,
Princeton University
,
1967
.
11.
Ruskai
,
M. B.
, “
Inequalities for quantum entropy: A review with conditions for equality
,”
J. Math. Phys.
43
,
4358
4375
(
2002
).
12.
Schmidt
,
E.
, “
Zur Theorie der linearen und nichtlinearen Integralgleichnungen
,”
Math. Ann.
63
,
433
476
(
1907
).
13.
Thirring
,
W.
,
A Course in Mathematical Physics 4. Quantum Mechanics of Large Systems
, translated by E. M. Harrell (
Springer-Verlag
, New York, Wien,
1980
).
14.
Uhlmann
,
A.
, “
The transition probability in the state space of a ∗-algebra
,”
Rep. Math. Phys.
9
,
273
277
(
1976
).
15.
Wehrl
,
A.
, “
General properties of entropy
,”
Rev. Mod. Phys.
50
,
221
–260 (
1978
).
You do not currently have access to this content.