We apply the method of determinants to study the distribution of the largest singular values of large m×n real rectangular random matrices with independent Cauchy entries. We show that for a special one-parametric class of statistics the properties of the largest singular values (rescaled by a factor 1m2n2) agree in the limit with the statistical properties of the Poisson random point process with the intensity (1π)x32 and, therefore, are different from the Tracy–Widom law. Among other corollaries of our method we show an interesting connection between the mathematical expectations of the determinants of the complex rectangular m×n standard Wishart ensemble and the real rectangular 2m×2n standard Wishart ensemble.

1.
Akemann
,
G.
and
Damgaard
,
P. H.
, “
Distribution of Dirac Operator Eigenvalues
,”
Phys. Lett. B
583
,
199
206
(
2004
).
2.
Bai
,
Z. D.
, “
Methodologies in spectral analysis of large dimensional random matrices
,”
Stat. Sin.
9
,
611
677
(
1999
).
3.
Bai
,
Z. D.
and
Silverstein
,
J. W.
, “
A note on the largest eigenvalue of a large dimensional sample covariance matrix
,”
J. Multivariate Anal.
26
,
166
168
(
1988
).
4.
Beenakker
,
C. W. J.
, “
Random matrix theory of quantum transport
,”
Rev. Mod. Phys.
69
,
731
808
(
1997
).
5.
Ben Arous
,
G.
and
Peche
,
S.
, “
Universality of local eigenvalue statistics for some sample covariance matrix ensemble
,” preprint (
2003
).
6.
Bollobás
,
B.
,
Random Graphs
, 2nd ed. (
Cambridge University Press
, Cambridge,
2001
).
7.
Brézin
,
E.
and
Hikami
,
S.
, “
Correlations of nearby levels induced by a random potential
,”
Nucl. Phys. B
479
,
697
706
(
1996
).
8.
Brézin
,
E.
and
Hikami
,
S.
, “
Spectral form factor in a random matrix theory
,”
Phys. Rev. E
55
,
4067
4083
(
1997
).
9.
Bronk
,
B. V.
, “
Exponential ensemble for random matrices
,”
J. Math. Phys.
6
,
228
237
(
1965
).
10.
Burda
,
Z.
,
Janik
,
R. A.
,
Jurkiewicz
,
J.
,
Nowak
,
M. A.
,
Papp
,
G.
and
Zahed
,
I.
, “
Free random Lévy matrices
,”
Phys. Rev. E
65
,
021106
(
2002
).
11.
Cizeau
,
P.
and
Bouchaud
,
J. P.
, “
Theory of Lévy matrices
,”
Phys. Rev. E
50
,
1810
1822
(
1994
).
12.
Daley
,
D. J.
and
Vere-Jones
,
D.
,
An Introduction to the Theory of Point Processes
, 2nd ed., (
Springer
, New York,
2003
), Vol
I
.
13.
Deift
,
P.
,
Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach
,
Courant Lecture Notes in Mathematics
, (
Courant
, New York,
1999
), Vol.
3
.
14.
Edelman
,
A.
, “
The distribution and moments of the smallest eigenvalue of a random matrix of a Wishart type
,”
Linear Algebr. Appl.
159
,
55
90
(
1991
).
15.
Forrester
,
P.
, “
The spectral edge of random matrix ensembles
,”
Nucl. Phys. B
402
,
709
728
(
1994
).
16.
Füredi
,
Z.
and
Komlós
,
J.
, “
The eigenvalues of random symmetric matrices
,”
Combinatorica
1
(
3
),
233
241
(
1981
).
17.
Fyodorov
,
Y. V.
and
Akemann
,
G.
, “
On the supersymmetric partition functions in QCD-inspired random matrix models
,”
JETP Lett.
77
,
438
442
(
2003
).
18.
Fyodorov
,
Y. V.
and
Ossipov
,
A.
, “
Distribution of the local density of states, reflection coefficiet, and Wigner Delay Time in absorbing ergodic stems at the point of chiral symmetry
,”
Phys. Rev. Lett.
92
,
084103
(
2004
).
19.
Fyodorov
,
Y. V.
and
Sommers
,
H.-J.
, “
Random matrices close to Hermitian or unitary: overview of methods and results
,”
J. Phys. A
36
,
3303
3347
(
2003
).
20.
James
,
A. T.
, “
Distribution of matrix variates and latent roots derived from normal samples
,”
Ann. Math. Stat.
35
,
475
501
(
1964
).
21.
Janik
,
R. A.
and
Nowak
,
M. A.
, “
Wishart and anti-Wishart random matrices
,”
J. Phys. A
36
,
3629
3637
(
2003
).
22.
Janik
,
R. A.
, “
New multicritical random matrix ensembles
,”
Nucl. Phys. B
635
,
492
504
(
2002
).
23.
Johansson
,
K.
, “
Universality of the Local Spacing Distribution in Certain Ensembles of Hermitian Wigner Matrices
,”
Commun. Math. Phys.
215
,
683
705
(
2001
).
24.
Johansson
,
K.
, “
On fluctuation of eigenvalues of random Hermitian matrices
,”
Duke Math. J.
91
,
151
204
(
1998
).
25.
Johnstone
,
I. M.
, “
On the distribution of the largest principal component
,”
Ann. Stat.
29
,
295
327
(
2001
).
26.
Kahn
,
J.
,
Komlós
,
J.
, and
Szemeredi
,
E.
, “
On the probability that a random ±1 matrix is singular
,”
J. Am. Math. Soc.
8
,
223
240
(
1995
).
27.
Kazakov
,
V. A.
, “
External matrix field problem and new multicriticalities in (2) dimensional random surfaces
,”
Nucl. Phys. B
354
,
614
624
(
1991
).
28.
Khorunzhy
,
A.
,
Khoruzhenko
,
B.
, and
Pastur
,
L.
, “
Asymptotic properties of large random matrices with independent entries
,”
J. Math. Phys.
37
,
5033
5059
(
1996
).
29.
Marchenko
,
V. A.
and
Pastur
,
L. A.
, “
Distribution of some sets of random matrices
,”
Math. USSR. Sb.
1
,
457
483
(
1967
).
30.
Mehta
,
M. L.
,
Random Matrices
(
Academic
, New York,
1991
).
31.
Minami
,
N.
, “
Local fluctuation of the spectrum of a multidimensional Anderson tight binding model
,”
Commun. Math. Phys.
177
,
709
725
(
1996
).
32.
Molchanov
,
S. A.
, “
The local structure of the spectrum of the one-dimensional Schrödinger operator
,”
Commun. Math. Phys.
78
,
429
446
(
1981
).
33.
Muirhead
,
R. J.
,
Aspects of Multivariate Statistical Theory
(
Wiley
, New York,
1982
).
34.
Silverstein
,
J. W.
, “
On the weak limit of the largest eigenvalue of a large dimesional sample covariance matrix
,”
J. Multivariate Anal.
30
,
307
311
(
1989
).
35.
Sinai
,
Ya.
and
Soshnikov
,
A.
, “
Central limit theorem for traces of large random matrices
,”
Bol. Soc. Bras. Mat.
29
,
1
24
(
1998
), a special issue dedicated to the memory of Ricardo Mañé.
36.
Sinai
,
Ya.
and
Soshnikov
,
A.
, “
A refinement, of Wigner’s semicircle law in a neighborhod of the spectrum edge for random symmetric matrices
,”
Funct. Anal. Appl.
32
(
2
),
114
131
(
1998
).
37.
Soshnikov
,
A.
, “
Universality at the edge of the spectrum in Wigner random matrices
,”
Commun. Math. Phys.
207
,
697
733
(
1999
).
38.
Soshnikov
,
A.
, “
A Note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices
,”
J. Stat. Phys.
108
(
5/6
),
1033
1056
(
2002
), a special issue dedicated to the 65th birthdays of David Ruelle and Yakov Sinai.
39.
Soshnikov
,
A.
, “
Poisson statistics for the largest eigenvalues of Wigner random matrices with heavy tails
,”
Electron. Commun. Probab.
9
,
82
91
(
2004
).
40.
Splittorff
,
K.
and
Verbaarschot
,
J. J. M.
, “
Replica Limit of the Toda Lattice Equation
,”
Phys. Rev. Lett.
90
,
041601
(
2003
).
41.
Tracy
,
C. A.
and
Widom
,
H.
, “
Level-spacing distribution and the Airy kernel
,”
Commun. Math. Phys.
159
,
151
174
(
1994
).
42.
Tracy
,
C. A.
and
Widom
,
H.
, “
On orthogonal and symplectic random matrix ensembles
,”
Commun. Math. Phys.
177
,
724
754
(
1996
).
43.
Tracy
,
C. A.
and
Widom
,
H.
, “
Level-spacing distribution and the Bessel kernel
,”
Commun. Math. Phys.
161
,
289
309
(
1994
).
44.
Tse
,
D.
and
Zeitouni
,
O.
, “
Linear Multiuser Receivers in Random Environment
,”
IEEE Trans. Inf. Theory
46
,
171
188
(
2000
).
45.
Verbaarschot
,
J. J.
and
Wettig
,
T.
, “
Random Matrix Theory and chiral symmetry in QCD
,”
Annu. Rev. Nucl. Part. Sci.
50
,
343
410
(
2000
).
46.
Watson
,
G. N.
,
A Treatise on the Theory of Bessel Functions
, 2nd ed. (
Cambridge University Press
, Cambridge,
1941
).
47.
Wigner
,
E.
, “
Characteristic vectors of bordered matrices with infinite dimensions
,”
Ann. Math.
62
,
548
564
(
1955
).
48.
Wigner
,
E.
, “
On the distribution of the roots of certain symmetric matrices
,”
Ann. Math.
67
,
325
328
(
1958
).
49.
Wigner
,
E.
, “
Random matrix theory in physics
,”
SIAM Rev.
9
,
1
23
(
1967
).
50.
Wilks
,
S. S.
,
Mathematical Statistics
(
Princeton University Press
, Princeton, NJ,
1943
).
51.
Yin
,
Y. Q.
,
Bai
,
Z. D.
, and
Krishnaiah
,
P. R.
, “
On the limit of the largest eigenvalue of the large dimesional sample covariance matrix
,”
Probab. Theory Relat. Fields
78
,
509
521
(
1988
).
You do not currently have access to this content.