We apply the method of determinants to study the distribution of the largest singular values of large real rectangular random matrices with independent Cauchy entries. We show that for a special one-parametric class of statistics the properties of the largest singular values (rescaled by a factor ) agree in the limit with the statistical properties of the Poisson random point process with the intensity and, therefore, are different from the Tracy–Widom law. Among other corollaries of our method we show an interesting connection between the mathematical expectations of the determinants of the complex rectangular standard Wishart ensemble and the real rectangular standard Wishart ensemble.
REFERENCES
1.
Akemann
, G.
and Damgaard
, P. H.
, “Distribution of Dirac Operator Eigenvalues
,” Phys. Lett. B
583
, 199
–206
(2004
).2.
Bai
, Z. D.
, “Methodologies in spectral analysis of large dimensional random matrices
,” Stat. Sin.
9
, 611
–677
(1999
).3.
Bai
, Z. D.
and Silverstein
, J. W.
, “A note on the largest eigenvalue of a large dimensional sample covariance matrix
,” J. Multivariate Anal.
26
, 166
–168
(1988
).4.
Beenakker
, C. W. J.
, “Random matrix theory of quantum transport
,” Rev. Mod. Phys.
69
, 731
–808
(1997
).5.
Ben Arous
, G.
and Peche
, S.
, “Universality of local eigenvalue statistics for some sample covariance matrix ensemble
,” preprint (2003
).6.
Bollobás
, B.
, Random Graphs
, 2nd ed. (Cambridge University Press
, Cambridge, 2001
).7.
Brézin
, E.
and Hikami
, S.
, “Correlations of nearby levels induced by a random potential
,” Nucl. Phys. B
479
, 697
–706
(1996
).8.
Brézin
, E.
and Hikami
, S.
, “Spectral form factor in a random matrix theory
,” Phys. Rev. E
55
, 4067
–4083
(1997
).9.
Bronk
, B. V.
, “Exponential ensemble for random matrices
,” J. Math. Phys.
6
, 228
–237
(1965
).10.
Burda
, Z.
, Janik
, R. A.
, Jurkiewicz
, J.
, Nowak
, M. A.
, Papp
, G.
and Zahed
, I.
, “Free random Lévy matrices
,” Phys. Rev. E
65
, 021106
(2002
).11.
Cizeau
, P.
and Bouchaud
, J. P.
, “Theory of Lévy matrices
,” Phys. Rev. E
50
, 1810
–1822
(1994
).12.
Daley
, D. J.
and Vere-Jones
, D.
, An Introduction to the Theory of Point Processes
, 2nd ed., (Springer
, New York, 2003
), Vol I
.13.
Deift
, P.
, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach
, Courant Lecture Notes in Mathematics
, (Courant
, New York, 1999
), Vol. 3
.14.
Edelman
, A.
, “The distribution and moments of the smallest eigenvalue of a random matrix of a Wishart type
,” Linear Algebr. Appl.
159
, 55
–90
(1991
).15.
Forrester
, P.
, “The spectral edge of random matrix ensembles
,” Nucl. Phys. B
402
, 709
–728
(1994
).16.
Füredi
, Z.
and Komlós
, J.
, “The eigenvalues of random symmetric matrices
,” Combinatorica
1
(3
), 233
–241
(1981
).17.
Fyodorov
, Y. V.
and Akemann
, G.
, “On the supersymmetric partition functions in QCD-inspired random matrix models
,” JETP Lett.
77
, 438
–442
(2003
).18.
Fyodorov
, Y. V.
and Ossipov
, A.
, “Distribution of the local density of states, reflection coefficiet, and Wigner Delay Time in absorbing ergodic stems at the point of chiral symmetry
,” Phys. Rev. Lett.
92
, 084103
(2004
).19.
Fyodorov
, Y. V.
and Sommers
, H.-J.
, “Random matrices close to Hermitian or unitary: overview of methods and results
,” J. Phys. A
36
, 3303
–3347
(2003
).20.
James
, A. T.
, “Distribution of matrix variates and latent roots derived from normal samples
,” Ann. Math. Stat.
35
, 475
–501
(1964
).21.
Janik
, R. A.
and Nowak
, M. A.
, “Wishart and anti-Wishart random matrices
,” J. Phys. A
36
, 3629
–3637
(2003
).22.
Janik
, R. A.
, “New multicritical random matrix ensembles
,” Nucl. Phys. B
635
, 492
–504
(2002
).23.
Johansson
, K.
, “Universality of the Local Spacing Distribution in Certain Ensembles of Hermitian Wigner Matrices
,” Commun. Math. Phys.
215
, 683
–705
(2001
).24.
Johansson
, K.
, “On fluctuation of eigenvalues of random Hermitian matrices
,” Duke Math. J.
91
, 151
–204
(1998
).25.
Johnstone
, I. M.
, “On the distribution of the largest principal component
,” Ann. Stat.
29
, 295
–327
(2001
).26.
Kahn
, J.
, Komlós
, J.
, and Szemeredi
, E.
, “On the probability that a random matrix is singular
,” J. Am. Math. Soc.
8
, 223
–240
(1995
).27.
Kazakov
, V. A.
, “External matrix field problem and new multicriticalities in dimensional random surfaces
,” Nucl. Phys. B
354
, 614
–624
(1991
).28.
Khorunzhy
, A.
, Khoruzhenko
, B.
, and Pastur
, L.
, “Asymptotic properties of large random matrices with independent entries
,” J. Math. Phys.
37
, 5033
–5059
(1996
).29.
Marchenko
, V. A.
and Pastur
, L. A.
, “Distribution of some sets of random matrices
,” Math. USSR. Sb.
1
, 457
–483
(1967
).30.
31.
Minami
, N.
, “Local fluctuation of the spectrum of a multidimensional Anderson tight binding model
,” Commun. Math. Phys.
177
, 709
–725
(1996
).32.
Molchanov
, S. A.
, “The local structure of the spectrum of the one-dimensional Schrödinger operator
,” Commun. Math. Phys.
78
, 429
–446
(1981
).33.
Muirhead
, R. J.
, Aspects of Multivariate Statistical Theory
(Wiley
, New York, 1982
).34.
Silverstein
, J. W.
, “On the weak limit of the largest eigenvalue of a large dimesional sample covariance matrix
,” J. Multivariate Anal.
30
, 307
–311
(1989
).35.
Sinai
, Ya.
and Soshnikov
, A.
, “Central limit theorem for traces of large random matrices
,” Bol. Soc. Bras. Mat.
29
, 1
–24
(1998
), a special issue dedicated to the memory of Ricardo Mañé.36.
Sinai
, Ya.
and Soshnikov
, A.
, “A refinement, of Wigner’s semicircle law in a neighborhod of the spectrum edge for random symmetric matrices
,” Funct. Anal. Appl.
32
(2
), 114
–131
(1998
).37.
Soshnikov
, A.
, “Universality at the edge of the spectrum in Wigner random matrices
,” Commun. Math. Phys.
207
, 697
–733
(1999
).38.
Soshnikov
, A.
, “A Note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices
,” J. Stat. Phys.
108
(5/6
), 1033
–1056
(2002
), a special issue dedicated to the 65th birthdays of David Ruelle and Yakov Sinai.39.
Soshnikov
, A.
, “Poisson statistics for the largest eigenvalues of Wigner random matrices with heavy tails
,” Electron. Commun. Probab.
9
, 82
–91
(2004
).40.
Splittorff
, K.
and Verbaarschot
, J. J. M.
, “Replica Limit of the Toda Lattice Equation
,” Phys. Rev. Lett.
90
, 041601
(2003
).41.
Tracy
, C. A.
and Widom
, H.
, “Level-spacing distribution and the Airy kernel
,” Commun. Math. Phys.
159
, 151
–174
(1994
).42.
Tracy
, C. A.
and Widom
, H.
, “On orthogonal and symplectic random matrix ensembles
,” Commun. Math. Phys.
177
, 724
–754
(1996
).43.
Tracy
, C. A.
and Widom
, H.
, “Level-spacing distribution and the Bessel kernel
,” Commun. Math. Phys.
161
, 289
–309
(1994
).44.
Tse
, D.
and Zeitouni
, O.
, “Linear Multiuser Receivers in Random Environment
,” IEEE Trans. Inf. Theory
46
, 171
–188
(2000
).45.
Verbaarschot
, J. J.
and Wettig
, T.
, “Random Matrix Theory and chiral symmetry in QCD
,” Annu. Rev. Nucl. Part. Sci.
50
, 343
–410
(2000
).46.
Watson
, G. N.
, A Treatise on the Theory of Bessel Functions
, 2nd ed. (Cambridge University Press
, Cambridge, 1941
).47.
Wigner
, E.
, “Characteristic vectors of bordered matrices with infinite dimensions
,” Ann. Math.
62
, 548
–564
(1955
).48.
Wigner
, E.
, “On the distribution of the roots of certain symmetric matrices
,” Ann. Math.
67
, 325
–328
(1958
).49.
Wigner
, E.
, “Random matrix theory in physics
,” SIAM Rev.
9
, 1
–23
(1967
).50.
Wilks
, S. S.
, Mathematical Statistics
(Princeton University Press
, Princeton, NJ, 1943
).51.
Yin
, Y. Q.
, Bai
, Z. D.
, and Krishnaiah
, P. R.
, “On the limit of the largest eigenvalue of the large dimesional sample covariance matrix
,” Probab. Theory Relat. Fields
78
, 509
–521
(1988
).© 2005 American Institute of Physics.
2005
American Institute of Physics
You do not currently have access to this content.