A mathematical model for chalcopyrite disease within sphalerite is developed. As one main result, by analyzing the system enthalpy, correct expressions for the reaction terms in a system undergoing phase transitions are worked out. For the resulting equations, the thermodynamical validity is shown and the existence of a unique solution is proved.

1.
Alt
,
H. W.
and
Luckhaus
,
S.
, “
Quasilinear elliptic parabolic differential equations
,”
Math. Z.
183
,
311
338
(
1983
).
2.
Bente
,
K.
and
Doering
,
T.
, “
Diffusion induced segregation in Cu-In systems
,”
Contrib. Mineral. Petrol.
53
,
285
305
(
1995
).
3.
Blesgen
,
T.
, “
Modeling and numerical simulation of diffusion induced segregation
,”
Cryst. Res. Technol.
37
,
570
580
(
2002
).
4.
Blesgen
,
T.
,
Luckhaus
,
S.
, and
Bente
,
K.
, “
Diffusion induced segregation in the case of the ternary system sphalerite, chalcopyrite and cubanite
,”
Cryst. Res. Technol.
39
,
969
979
(
2004
).
5.
Elliott
,
C. M.
and
Luckhaus
,
S.
, “
A generalized diffusion equation for phase separation of a multi-component mixture with interfacial free energy
,” Report No. SFB 256,
University Bonn
,
1991
.
6.
Elliott
,
C. M.
and
Songmu
,
Z.
, “
On the Cahn–Hilliard equation
,”
Arch. Ration. Mech. Anal.
96
,
339
357
(
1986
).
7.
Garcke
,
H.
, Habilitation thesis, Bonn,
2001
.
8.
Grindrod
,
P.
,
The Theory and Application of Reaction-Diffusion Equations, Patterns and Waves
, 2nd ed. (
Clarendon
, Oxford,
1996
).
9.
Kirkaldy
,
J. S.
and
Young
,
D. J.
,
Diffusion in the Condensed State
(
The Institute of Metals
, London,
1987
).
10.
O’Keefe
,
M.
and
Navrotsky
,
A.
,
Structures and Bonding in Crystals
(
Academic
, New York,
1981
).
11.
Onsager
,
L.
, “
Reciprocal relations in irreversible processes I
,”
Phys. Rev.
37
,
405
426
(
1931
).
12.
Onsager
,
L.
, “
Reciprocal relations in irreversible processes II
,”
Phys. Rev.
38
,
2265
2279
(
1931
).
13.
Protter
,
M. H.
and
Weinberger
,
H. F.
,
Maximum Principle in Differential Equations
, 2nd ed. (
Springer
, New York,
1999
).
You do not currently have access to this content.