We develop graph theoretic methods for analyzing maximally entangled pure states distributed between a number of different parties. We introduce a technique called bicolored merging, based on the monotonicity feature of entanglement measures, for determining combinatorial conditions that must be satisfied for any two distinct multiparticle states to be comparable under local operations and classical communication. We present several results based on the possibility or impossibility of comparability of pure multipartite states. We show that there are exponentially many such entangled multipartite states among n agents. Further, we discuss a new graph theoretic metric on a class of multipartite states, and its implications.

1.
Bandyopadhyay
,
S.
,
Roychowdhury
,
V.
, and
Sen
,
U.
, “
Classification of nonasymptotic bipartite pure-state entanglement tansformations
,”
Phys. Rev. A
65
,
052315
(
2002
).
2.
Bennett
,
C. H.
,
Brassard
,
G.
,
Crepeau
,
C.
,
Jozsa
,
R.
,
Peres
,
A.
, and
Wootters
,
W. K.
, “
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels
,”
Phys. Rev. Lett.
70
,
1895
(
1993
).
3.
Bennett
,
C. H.
,
DiVincenzo
,
D. P.
,
Smolin
,
J. A.
, and
Wootters
,
W. K.
,
Phys. Rev. A
54
,
3824
(
1996
).
4.
Bennett
,
C. H.
,
Popescu
,
S.
,
Rohrlich
,
D.
,
Smolin
,
J. A.
, and
Thapliyal
,
A. V.
, “
Exact and asymptotic measures of multipartite pure-state entanglement
,”
Phys. Rev. A
63
,
012307
(
2000
).
5.
Berge
,
C.
,
Hypergraphs
(
Elsevier Science
,
New Hampshire
,
1989
).
6.
Bouwmeester
,
D.
,
Ekert
,
A.
, and
Zeilinger
,
A.
,
The Physics of Quantum Information
(
Springer
,
New York
,
2000
).
7.
Bose
,
S.
,
Vedral
,
V.
, and
Knight
,
P. L.
, “
Multiparticle generalization of entanglement swapping
,”
Phys. Rev. A
57
,
822
(
1998
).
8.
Bruss
,
D.
, “
Characterizing entanglement
,”
J. Math. Phys.
43
,
4237
(
2002
).
9.
Deo
,
N.
,
Graph Theory: With Applications to Engineering and Computational Science
(
Prentice-Hall
,
New York
,
1974
).
10.
Grahmam
,
R. L.
,
Grotschel
,
M.
, and
Lovasz
,
L.
,
Handbook of Combinatorics
(
Elsevier Science
,
New Hampshier
,
1995
).
11.
Henderson
,
L.
and
Vedral
,
V.
, “
Information, Relative Entropy of Entanglement, and Irreversibility
Phys. Rev. Lett.
84
,
2263
(
2000
).
12.
Horodecki
,
M.
, “
Entanglement measures
,”
Quantum Inf. Comput.
1
,
3
(
2001
).
13.
Horodecki
,
M.
,
Horodecki
,
P.
, and
Horodecki
,
R.
, “
Separability of Mixed States: Necessary and Sufficient Conditions
Phys. Lett. A
223
,
1
(
1996
).
14.
Kempe
,
J.
, “
Multiparticle entanglement and its applications to cryptography
,”
Phys. Rev. A
60
,
910
(
1999
).
15.
Linden
,
N.
and
Popescu
,
S.
, “
On multi-partite entanglement
,”
Fortschr. Phys.
46
,
567
578
(
1998
).
16.
Linden
,
N.
,
Popescu
,
S.
, and
Sudbery
,
A.
, “
Nonlocal parameters for multiparticle density matrices
,”
Phys. Rev. Lett.
83
,
242
(
1999
).
17.
Liu
,
D.
,
Lu
,
Guoying
, and
Draayer
,
J. P.
, “
A simple entanglement measure for multipartite pure states
,”
Int. J. Theor. Phys.
43
,
1241
(
2004
).
18.
Nielsen
,
M. A.
, “
Conditions for a class of entanglement transformations
,”
Phys. Rev. Lett.
83
,
436
(
1999
).
19.
Nielsen
,
M. A.
and
Chuang
,
I. L.
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
Cambridge
,
2002
).
20.
Partovi
,
M. H.
, “
Universal measure of entanglement
,”
Phys. Rev. Lett.
92
,
077904
(
2004
).
21.
Rains
,
E. M.
, “
Rigorous treatment of distillable entanglement
Phys. Rev. A
60
,
173
(
1999
);
Rains
,
E. M.
,
Phys. Rev. A
63
,
173
(E) (
1999
).
22.
Samal
,
M. K.
, (private communication).
23.
Singh
,
S. K.
, “
Combinatorial approaches in quantum information theory
,” M.Sci. thesis, Dept. of Mathematics, IIT Kharagpur, India.
24.
Singh
,
S. K.
,
Kumar
,
S.
, and
Pal
,
S. P.
, quant-ph/0306049.
25.
van Lint
,
J. H.
and
Wilson
,
R. M.
,
A Course in Combinatorics
(
Cambridge University Press
,
Cambridge
,
1992
).
26.
Vidal
,
G.
,
Dür
,
W.
, and
Cirac
,
J. I.
, “
Entanglement Cost of Bipartite Mixed States
Phys. Rev. Lett.
89
,
027901
(
2002
).
27.
Vidal
,
G.
and
Werner
,
R. F.
, quant-ph/0102117.
28.
Wootters
,
W. K.
, “
Entanglement of Formation of an Arbitrary State of Two Qubits
Phys. Rev. Lett.
80
,
2245
(
1998
).
29.
Zeilinger
,
A.
,
Horne
,
M. A.
,
Weinfurter
,
H.
, and
Zukowski
,
M.
, “
Three-particle entanglements from two entangled pairs
,”
Phys. Rev. Lett.
78
,
3031
(
1997
).
30.
Zukowski
,
M.
,
Zeilinger
,
A.
, and
Weinfurter
,
H.
, “
Entangling independent pulsed photon sources
,”
Ann. N.Y. Acad. Sci.
755
,
91
(
1995
).
You do not currently have access to this content.