Eigenfunctions of the equation ×B=λB are found for finite cylindrical geometry with normal boundary condition Bn̂=0 and nonaxisymmetric modes eimθ,m0. The vector field B can be represented by a scalar generating function of the Chandrasekhar-Kendall type with radial Bessel functions for the nondegenerate cases. A general set of solutions can also be generated by transformation of variables. A series solution in terms of radial Bessel functions is found which has excellent convergence properties (an1n4) and a robust method of locating eigenvalues is described.

1.
E.
Beltrami
,
Rend. Inst. Lombardo Acad. Sci. Lett.
22
,
122
(
1889
).
English translation,
E.
Beltrami
,
J. Fusion Energy
3
,
53
(
1985
).
2.
V.
Trkal
,
Časopis pro pĕstování Mathemakity a Fysiky
48
,
302
(
1919
).
3.
L.
Woltjer
,
Proc. Natl. Acad. Sci. U.S.A.
44
,
489
(
1958
).
4.
J. B.
Taylor
,
Phys. Rev.
33
,
1139
(
1974
);
J. B.
Taylor
,
Rev. Mod. Phys.
58
,
741
(
1986
).
5.
Z.
Yoshida
and
Y.
Giga
,
Math. Z.
204
,
235
(
1990
).
6.
H.
Chen
,
X.
Shan
, and
D.
Montgomery
,
Phys. Rev. A
42
,
6158
(
1990
);
[PubMed]
H.
Chen
,
X.
Shan
, and
D.
Montgomery
,
Phys. Rev. A
44
,
6800
(
1991
).
[PubMed]
7.
D. D.
Hua
,
T. K.
Fowler
, and
E. C.
Morse
,
J. Plasma Phys.
66
,
275
(
2001
).
8.
S.
Chandrasekhar
and
P. C.
Kendall
,
Astrophys. J.
126
,
157
(
1957
).
9.
A.
Douglis
,
Commun. Pure Appl. Math.
VI
,
259
(
1953
).
10.
J.
Finn
,
W.
Manheimer
, and
E.
Ott
,
Phys. Fluids
24
,
1336
(
1981
), English translation, Czech, J. Phys. 44, 97 (1997).
You do not currently have access to this content.