We give sufficient conditions for ergodicity of the Markovian semigroups associated to Dirichlet forms on standard forms of von Neumann algebras constructed by the method proposed by Park. We apply our result to show that the diffusion type Markovian semigroups for quantum spin systems are ergodic in the region of high temperatures where the uniqueness of the KMS state holds.
REFERENCES
1.
Y. M.
Park
, Infinite Dimen. Anal., Quantum Probab., Relat. Top.
3
, 1
(2000
).2.
Y. M.
Park
, math-ph∕04001.3.
O.
Bratteli
and D. W.
Robinson
, Operator Algebras and Quantum Statistical Mechanics
(Springer-Verlag
, New York, Heidelberg, Berlin, 1979
), Vols. I
and (1981) II
.4.
E. B.
Davies
, Quantum Theory of Open Systems
(Academic
, London, New York, San Francisco, 1976
).5.
L.
Accardi
, Phys. Rep.
77
, 169
(1981
).6.
K. R.
Parthasarathy
, An Introduction to Quantum Stochastic Calculus
(Birkhäuser
, Basel, 1992
).7.
F.
Cipriani
, J. Funct. Anal.
147
, 259
(1997
).8.
9.
10.
C.
Bahn
, C. K.
Ko
, and Y. M.
Park
, J. Math. Phys.
44
, 723
(2003
).11.
12.
13.
A. W.
Majewski
and B.
Zegarlinski
, Rev. Math. Phys.
8
, 689
(1996
).14.
B.
Zegarlinski
, “Analysis of classical and quantum interacting partical systems
,” in Quantum Probability and White Noise Analysis
, edited by L.
Accard
and F.
Fagnola
(World Scientific
, Singapore, 2000
), Vol. XIV
, pp. 241
–336
.15.
C. K.
Ko
and Y. M.
Park
, J. Math. Phys.
45
, 609
(2004
).16.
17.
F.
Cipriani
, F.
Fagnola
, and J. M.
Lindsay
, Commun. Math. Phys.
210
, 85
(2000
).18.
F.
Cipriani
, Perron theory for positive maps semigroups on von Neumann algebras, Canadian Mathematical Society, Conference Proceedings, 2000
, Vol. 2a
, pp. 115
–123
.19.
20.
M.
Reed
and B.
Simon
, Method of Modern Mathmatical Physics I, II
(Academic
, New York, 1980
).© 2005 American Institute of Physics.
2005
American Institute of Physics
You do not currently have access to this content.