We find pairs of solutions to a differential equation which is obtained as a special limit of a generalized spheroidal wave equation (this is also known as confluent Heun equation). One solution in each pair is given by a series of hypergeometric functions and converges for any finite value of the independent variable z, while the other is given by a series of modified Bessel functions and converges for z>z0, where z0 denotes a regular singularity. For short, the preceding limit is called Ince’s limit after Ince who have used the same procedure to get the Mathieu equations from the Whittaker-Hill ones. We find as well that, when z0 tends to zero, the Ince limit of the generalized spheroidal wave equation turns out to be the Ince limit of a double-confluent Heun equation, for which solutions are provided. Finally, we show that the Schrödinger equation for inverse fourth- and sixth-power potentials reduces to peculiar cases of the double-confluent Heun equation and its Ince’s limit, respectively.

1.
Heun’s Differential Equations
, edited by
A.
Ronveaux
(
Oxford University Press
, New York,
1995
).
2.
E. W.
Leaver
,
J. Math. Phys.
27
,
1238
(
1986
).
3.
F. M.J.
Olver
,
Asymptotics and Special Functions
(
Academic
, New York,
1974
).
4.
A. H.
Wilson
,
Proc. R. Soc. London, Ser. A
118
,
617
(
1928
).
5.
A.
Decarreau
,
M. C.
Dumont-Lepage
,
P.
Maroni
,
A.
Robert
, and
A.
Ronveaux
,
Ann. Soc. Sci. Bruxelles, Ser. 1
T92
,
53
(
1978
).
6.
D.
Schmidt
and
G.
Wolf
,
Double Confluent Heun Equation
, Part C of Ref. 1.
7.
B. D.B.
Figueiredo
,
J. Phys. A
35
,
2877
(
2002
);
B. D.B.
Figueiredo
,
J. Phys. A
35
,
4799
(
2002
) (corrigendum).
8.
E. L.
Ince
,
Proc. London Math. Soc.
23
,
56
(
1923
).
9.
E. W.
McLachlan
,
Theory and Application of Mathieu Functions
(
Dover
, New York,
1964
).
10.
F.
Lindemann
,
Math. Ann.
22
,
117
(
1883
).
11.
Handbook of Mathematical Functions
, edited by
M.
Abramowitz
and
I. A.
Stegun
(
Dover
, New York,
1965
).
12.
A.
Erdélyi
 et al.,
Higher Transcendental Functions
(
McGraw-Hill
, New York,
1953
), vol.
1
.
13.
W.
Gautschi
,
SIAM Rev.
9
,
24
(
1967
).
14.
E. G.C.
Poole
,
Proc. London Math. Soc.
20
,
374
(
1921
).
15.
E. G.C.
Poole
,
Introduction to the Theory of Linear Differential Equation
(
Dover
, New York,
1960
).
16.
W.
Bühring
,
J. Math. Phys.
15
,
1451
(
1974
).
17.
Y. L.
Luke
,
Integrals of Bessel Functions
(
McGraw-Hill
, New York,
1962
).
18.
B. D.B.
Figueiredo
and
M.
Novello
,
J. Math. Phys.
34
,
3121
(
1993
).
19.
E. D.
Fackerell
and
R. G.
Crossman
,
J. Math. Phys.
18
,
1849
(
1977
).
20.
F. M.
Arscott
,
Periodic Differential Equations
(
Pergamon
, Oxford,
1964
).
21.
W. M.
Frank
,
D. J.
Land
, and
R. M.
Spector
,
Rev. Mod. Phys.
43
,
36
(
1971
).
22.
A.
Lemieux
and
A. K.
Bose
,
Ann. Inst. Henri Poincare
10
,
259
(
1969
).
23.
C. J.
Kleinman
,
Y.
Hahn
, and
L.
Spruch
,
Phys. Rev.
165
,
53
(
1968
).
24.
W.
Bühring
, in
Centennial Workshop on Heun’s Equation
, edited by
A.
Seeger
, and
W.
Lay
(
Max-Plank-Institut für Metallforchung, Institut für Physik, Stuttgart
,
1990
).
25.
E.
Vogt
and
G. H.
Wannier
,
Phys. Rev.
95
,
1190
(
1954
).
26.
N. A.W.
Holzwarth
,
J. Math. Phys.
14
,
191
(
1973
).
27.
A.
Decarreau
,
P.
Maroni
, and
A.
Robert
,
Ann. Soc. Sci. Bruxelles, Ser. 1
T92
,
151
(
1978
).
28.
T.
Kurth
and
D.
Schmidt
,
SIAM J. Math. Anal.
17
,
1086
(
1986
).
You do not currently have access to this content.