We introduce the notion of Gauss-Landau-Hall magnetic field on a Riemannian surface. The corresponding Landau-Hall problem is shown to be equivalent to the dynamics of a massive boson. This allows one to view that problem as a globally stated, variational one. In this framework, flowlines appear as critical points of an action with density depending on the proper acceleration. Moreover, we can study global stability of flowlines. In this equivalence, the massless particle model corresponds with a limit case obtained when the force of the Gauss-Landau-Hall magnetic field increases arbitrarily. We also obtain properties related with the completeness of flowlines for general magnetic fields. The paper also contains results relative to the Landau-Hall problem associated with a uniform magnetic field. For example, we characterize those revolution surfaces whose parallels are all normal flowlines of a uniform magnetic field.
Skip Nav Destination
Article navigation
November 2005
Research Article|
November 30 2005
The Gauss-Landau-Hall problem on Riemannian surfaces Available to Purchase
Manuel Barros;
Manuel Barros
a)
Departamento de Geometría y Topología, Facultad de Ciencias,
Universidad de Granada
, 18071-Granada, Spain
Search for other works by this author on:
Alfonso Romero;
Alfonso Romero
b)
Departamento de Geometría y Topología, Facultad de Ciencias,
Universidad de Granada
, 18071-Granada, Spain
Search for other works by this author on:
José L. Cabrerizo;
José L. Cabrerizo
c)
Departamento de Geometría y Topología,
Facultad de Matematicas Universidad de Sevilla
, 41012-Sevilla, Spain
Search for other works by this author on:
Manuel Fernández
Manuel Fernández
d)
Departamento de Geometría y Topología,
Facultad de Matematicas Universidad de Sevilla
, 41012-Sevilla, Spain
Search for other works by this author on:
Manuel Barros
a)
Departamento de Geometría y Topología, Facultad de Ciencias,
Universidad de Granada
, 18071-Granada, Spain
Alfonso Romero
b)
Departamento de Geometría y Topología, Facultad de Ciencias,
Universidad de Granada
, 18071-Granada, Spain
José L. Cabrerizo
c)
Departamento de Geometría y Topología,
Facultad de Matematicas Universidad de Sevilla
, 41012-Sevilla, Spain
Manuel Fernández
d)
Departamento de Geometría y Topología,
Facultad de Matematicas Universidad de Sevilla
, 41012-Sevilla, Spaina)
Electronic mail: [email protected]
b)
Electronic mail: [email protected]
c)
Author to whom correspondence should be addressed. Electronic mail: [email protected]
d)
Electronic mail: [email protected]
J. Math. Phys. 46, 112905 (2005)
Article history
Received:
April 23 2004
Accepted:
October 11 2005
Citation
Manuel Barros, Alfonso Romero, José L. Cabrerizo, Manuel Fernández; The Gauss-Landau-Hall problem on Riemannian surfaces. J. Math. Phys. 1 November 2005; 46 (11): 112905. https://doi.org/10.1063/1.2136215
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Well-posedness and decay structure of a quantum hydrodynamics system with Bohm potential and linear viscosity
Ramón G. Plaza, Delyan Zhelyazov
New directions in disordered systems: A conference in honor of Abel Klein
A. Elgart, F. Germinet, et al.
Cascades of scales: Applications and mathematical methodologies
Luigi Delle Site, Rupert Klein, et al.
Related Content
Variable separation for natural Hamiltonians with scalar and vector potentials on Riemannian manifolds
J. Math. Phys. (May 2001)
Global embedding of BTZ spacetime using generalized method of symmetric embeddings construction
J. Math. Phys. (October 2021)
Massless particles in three-dimensional Lorentzian warped products
J. Math. Phys. (January 2007)
Generalized Weierstrass representations of surfaces with the constant Gauss curvature in pseudo-Riemannian three-dimensional space forms
J. Math. Phys. (April 2007)
Dynamical systems and nilpotent sub-Riemannian geometry
J. Math. Phys. (March 2008)