We introduce the notion of Gauss-Landau-Hall magnetic field on a Riemannian surface. The corresponding Landau-Hall problem is shown to be equivalent to the dynamics of a massive boson. This allows one to view that problem as a globally stated, variational one. In this framework, flowlines appear as critical points of an action with density depending on the proper acceleration. Moreover, we can study global stability of flowlines. In this equivalence, the massless particle model corresponds with a limit case obtained when the force of the Gauss-Landau-Hall magnetic field increases arbitrarily. We also obtain properties related with the completeness of flowlines for general magnetic fields. The paper also contains results relative to the Landau-Hall problem associated with a uniform magnetic field. For example, we characterize those revolution surfaces whose parallels are all normal flowlines of a uniform magnetic field.

1.
L. D.
Landau
and
E. M.
Lifschitz
,
Course of Theoretical Physics
, Vol.
1
. Mechanics, 3rd ed. (
Pergamon
,
Oxford, New York, Toronto
,
1976
).
2.
M. S.
Plyushchay
,
Phys. Lett. B
243
,
383
(
1990
).
3.
M. S.
Plyushchay
,
Int. J. Mod. Phys. A
4
,
3851
(
1989
).
4.
R. K.
Sachs
and
H.
Wu
,
General Relativity for Mathematicians
, in
Graduate Texts in Mathematics, 48
(
Springer-Verlag
,
New York
,
1977
).
5.
A.
Romero
and
M.
Sánchez
(unpublished).
6.
R.
Abraham
and
J. E.
Marsden
,
Foundations of Mechanics
, 2nd. ed. (
Perseus
,
Massachusetts
,
1988
).
7.
B.
O’Neill
,
Semi-Riemannian Geometry with Applications to Relativity
(
Academic
,
New York
,
1983
).
8.
A.
Lopez-Almorox
and
C.
Tejero
, RACSAM
Rev. R. Acad. Cien. Exactas Fis. Nat. Ser. A Mat.
95
,
259
(
2001
).
9.
K.
Nomizu
and
H.
Ozeki
,
Proc. Am. Math. Soc.
12
,
889
(
1961
).
10.
T.
Adachi
,
Tsukuba J. Math.
20
,
225
(
1996
).
11.
A.
Comtet
,
Ann. Phys.
173
,
185
(
1987
).
12.
N.
Gouda
,
Tohoku Math. J.
49
,
165
(
1997
);
N.
Gouda
,
J. Math. Soc. Jpn.
50
,
767
(
1998
).
13.
D. A.
Kalinin
,
Rep. Math. Phys.
39
,
299
(
1997
).
14.
A.
Lopez-Almorox
and
C.
Tejero-Prieto
,
Rev. R. Acad. Cien. Exactas Fis. Nat. Ser. A Mat.
95
,
259
(
2001
).
15.
G. P.
Paternain
and
M.
Paternain
,
Nonlinearity
10
,
121
(
1997
).
16.
M. P.
Wojtkowski
,
Fund. Math.
163
,
177
(
2000
).
17.
J.
Arroyo
, Ph.D. thesis, UPV,
2001
.
18.
J.
Arroyo
,
M.
Barros
, and
O. J.
Garay
,
J. Geom. Phys.
41
,
65
(
2002
).
19.
V. V.
Nesterenko
,
A.
Feoli
, and
G.
Scarpetta
,
J. Math. Phys.
36
,
5552
(
1995
);
V. V.
Nesterenko
,
A.
Feoli
, and
G.
Scarpetta
,
Class. Quantum Grav.
13
,
1201
(
1996
).
20.
M.
Barros
,
Gen. Relativ. Gravit.
34
,
837
(
2002
).
21.
M. S.
Plyushchay
,
Mod. Phys. Lett. A
4
,
837
(
1989
).
22.
M. S.
Plyushchay
, hep-th∕9810101.
23.
M. S.
Ody
and
L. H.
Ryder
,
Int. J. Mod. Phys. A
10
,
337
(
1995
).
24.
T.
Tsurumaru
and
I.
Tsutsui
,
Phys. Lett. B
460
,
94
(
1999
).
You do not currently have access to this content.