We present a general classification of Hamiltonian multivector fields and of Poisson forms on the extended multiphase space appearing in the geometric formulation of first order classical field theories. This is a prerequisite for computing explicit expressions for the Poisson bracket between two Poisson forms.

1.
M.
Forger
and
H.
Römer
,
Rep. Math. Phys.
48
,
211
(
2001
).
2.
M.
Forger
,
C.
Paufler
, and
H.
Römer
,
Rev. Math. Phys.
15
,
705
(
2003
).
3.
J.
Kijowski
,
Commun. Math. Phys.
30
,
99
(
1973
).
4.
J.
Kijowski
and
W.
Szczyrba
, “
Multisymplectic manifolds and the geometrical construction of the Poisson brackets in the classical field theory
,” in
Géometrie Symplectique et Physique Mathématique
, edited by
J.-M.
Souriau
(
CNRS
, Paris,
1975
), pp.
347
379
.
5.
J. F.
Cariñena
,
M.
Crampin
, and
L. A.
Ibort
,
Diff. Geom. Applic.
1
,
345
(
1991
).
6.
M. J.
Gotay
, “
A multisymplectic framework for classical field theory and the calculus of variations I: Covariant Hamiltonian formalism
,” in Mechanics, Analysis and Geometry: 200years after Lagrange, edited by
M.
Francaviglia
and
D. D.
Holm
,
1991
, pp.
203
235
.
7.
M. J.
Gotay
,
J.
Isenberg
, and
J. E.
Marsden
, physics∕9801019.
8.
W. M.
Tulczyew
,
Bull. Acad. Pol. Sci., Ser. Sci., Math., Astron. Phys.
22
,
937
(
1974
).
9.

For the sake of brevity, we have left out straightforward but tedious parts of the proofs. The reader may find more detailed guidelines in the arXiv version of this article under math-ph∕0407057v1.

10.
R.
Bryant
(private communication).
11.
I. V.
Kanatchikov
,
Rep. Math. Phys.
40
,
225
(
1997
).
12.
C.
Crnković
and
E.
Witten
, “
Covariant description of canonical formalism in geometrical theories
,” in
Three Hundred Years of Gravitation
, edited by
W.
Israel
and
S.
Hawking
(
Cambridge University Press
, Cambridge,
1987
), pp.
676
684
.
13.
C.
Crnković
,
Class. Quantum Grav.
5
,
1557
(
1988
).
14.
G.
Zuckerman
, “
Action principles and global geometry
,” in
Mathematical Aspects of String Theory
, edited by
S.-T.
Yau
(
World Scientific
, Singapore,
1987
), pp.
259
288
.
15.
S. V.
Romero
, Ph.D. thesis, IME-USP,
2001
.
16.
M.
Forger
and
S. V.
Romero
,
Commun. Math. Phys.
256
,
375
(
2005
).
17.
M. O.
Salles
, Ph.D. thesis, IME-USP,
2004
.
You do not currently have access to this content.