A generic degenerate Lagrangian system of even and odd fields is examined in algebraic terms of the Grassmann-graded variational bicomplex. Its Euler–Lagrange operator obeys Noether identities which need not be independent, but satisfy first-stage Noether identities, and so on. We show that, if a certain necessary and sufficient condition holds, one can associate to a degenerate Lagrangian system the exact Koszul–Tate complex with the boundary operator whose nilpotency condition restarts all its Noether and higher-stage Noether identities. This complex provides a sufficient analysis of the degeneracy of a Lagrangian system for the purpose of its BV quantization.

1.
D.
Bashkirov
,
G.
Giachetta
,
L.
Mangiarotti
, and
G.
Sardanashvily
,
J. Phys. A
38
,
5239
(
2005
).
2.
D.
Bashkirov
,
G.
Giachetta
,
L.
Mangiarotti
, and
G.
Sardanashvily
,
J. Math. Phys.
46
,
053517
(
2005
).
3.
I.
Batalin
and
G.
Vilkovisky
,
Nucl. Phys. B
234
,
106
(
1984
).
4.
J.
Gomis
,
J.
París
, and
S.
Samuel
,
Phys. Rep.
295
,
1
(
1995
).
5.
J.
Fisch
,
M.
Henneaux
,
J.
Stasheff
, and
C.
Teitelboim
,
Commun. Math. Phys.
120
,
379
(
1989
).
6.
J.
Fisch
and
M.
Henneaux
,
Commun. Math. Phys.
128
,
627
(
1990
).
7.
G.
Barnich
,
F.
Brandt
, and
M.
Henneaux
,
Phys. Rep.
338
,
439
(
2000
).
8.
G.
Sardanashvily
,
Int. J. Geom. Methods Mod. Phys.
2
,
N5
(
2005
).
9.
G.
Giachetta
,
L.
Mangiarotti
, and
G.
Sardanashvily
,
Commun. Math. Phys.
259
,
103
(
2005
).
10.
C.
Bartocci
,
U.
Bruzzo
, and
D.
Hernández Ruipérez
,
The Geometry of Supermanifolds
(
Kluwer
, Dordrecht,
1991
).
11.
G.
Giachetta
,
L.
Mangiarotti
, and
G.
Sardanashvily
,
Geometric and Algebraic Topological Methods in Quantum Mechanics
(
World Scientific
, Singapore,
2005
).
13.
D.
Fuks
,
Cohomology of Infinite-Dimensional Lie Algebras
(
Consultants Bureau
, New York,
1986
).
14.
D.
Hernández Ruipérez
and
J.
Muñoz Masqué
,
J. Math. Pures Appl.
63
,
283
(
1984
).
15.
F.
Brandt
,
Lett. Math. Phys.
55
,
149
(
2001
).
You do not currently have access to this content.