We derive inequalities for n-partite states under the assumption that the hidden-variable theoretical joint probability distribution for any pair of commuting observables is equal to the quantum mechanical one. Fine showed that this assumption is connected to the no-hidden-variables theorem of Kochen and Specker (KS theorem). These inequalities give a way to experimentally test the KS theorem. The fidelity to the Bell states which is larger than 12 is sufficient for the experimental confirmation of the KS theorem. Hence, the Werner state is enough to test experimentally the KS theorem. Furthermore, it is possible to test the KS theorem experimentally using uncorrelated states. An n-partite uncorrelated state violates the n-partite inequality derived here by an amount that grows exponentially with n.

1.
A.
Einstein
,
B.
Podolsky
, and
N.
Rosen
,
Phys. Rev.
47
,
777
(
1935
).
2.
M.
Redhead
,
Incompleteness, Nonlocality, and Realism
, 2nd ed. (
Clarendon
, Oxford,
1989
).
3.
A.
Peres
,
Quantum Theory: Concepts and Methods
(
Kluwer Academic
, Dordrecht, The Netherlands,
1993
).
4.
J. S.
Bell
,
Physics (Long Island City, N.Y.)
1
,
195
(
1964
).
5.
S.
Kochen
and
E. P.
Specker
,
J. Math. Mech.
17
,
59
(
1967
).
6.
A.
Fine
,
J. Math. Phys.
23
,
1306
(
1982
).
8.
D. M.
Greenberger
,
M. A.
Horne
, and
A.
Zeilinger
, in
Bell’s Theorem, Quantum Theory and Conceptions of the Universe
, edited by
M.
Kafatos
(
Kluwer Academic
, Dordrecht, The Netherlands,
1989
), pp.
69
72
;
D. M.
Greenberger
,
M. A.
Horne
,
A.
Shimony
, and
A.
Zeilinger
,
Am. J. Phys.
58
,
1131
(
1990
).
9.
C.
Pagonis
,
M. L. G.
Redhead
, and
R. K.
Clifton
,
Phys. Lett. A
155
,
441
(
1991
).
10.
N. D.
Mermin
,
Phys. Today
43
,
9
(
1990
);
N. D.
Mermin
,
Am. J. Phys.
58
,
731
(
1990
).
12.
13.
14.
S. M.
Roy
and
V.
Singh
,
Phys. Rev. Lett.
67
,
2761
(
1991
);
[PubMed]
A. V.
Belinskii
and
D. N.
Klyshko
,
Phys. Usp.
36
,
653
(
1993
);
R. F.
Werner
and
M. M.
Wolf
,
Phys. Rev. A
61
,
062102
(
2000
).
15.
M.
Żukowski
and
D.
Kaszlikowski
,
Phys. Rev. A
56
,
R1682
(
1997
);
M.
Żukowski
and
Č.
Brukner
,
Phys. Rev. Lett.
88
,
210401
(
2002
);
[PubMed]
R. F.
Werner
and
M. M.
Wolf
,
Phys. Rev. A
64
,
032112
(
2001
);
R. F.
Werner
and
M. M.
Wolf
,
Quantum Inf. Comput.
1
,
1
(
2001
).
16.
See, for example,
A.
Cabello
,
Phys. Rev. Lett.
90
,
190401
(
2003
).
17.
C.
Simon
,
Č.
Brukner
, and
A.
Zeilinger
,
Phys. Rev. Lett.
86
,
4427
(
2001
);
[PubMed]
J.-Å.
Larsson
,
Europhys. Lett.
58
,
799
(
2002
);
A.
Cabello
,
Phys. Rev. A
65
,
052101
(
2002
).
18.
For a recent experimental report of tests for all versus nothing type KS theorem, see
Y.-F.
Huang
,
C.-F.
Li
,
Y.-S.
Zhang
,
J.-W.
Pan
, and
G.-C.
Guo
,
Phys. Rev. Lett.
90
,
250401
(
2003
).
19.
R. F.
Werner
,
Phys. Rev. A
40
,
4277
(
1989
).
20.
K.
Nagata
,
M.
Koashi
, and
N.
Imoto
,
Phys. Rev. A
65
,
042314
(
2002
).
21.

We know that every proposition is true if the presupposition is false [see Eq. (3.6)]. Therefore, one might think that theorem (4.2) and theorem (5.16) are trivial. However, this is not the matter of our argument. We have used a quantum mechanical rule σx1σx2σy1σy2σz1σz2=I in the proof of the theorem (3.6). But, we have not used the quantum mechanical rule in the proof of the theorem (4.2). Likewise, a quantum mechanical rule σxiσyjσyiσxjσziσzj=I, (i,jNn,ij) is needless to prove the theorem (5.16), while we have used the quantum mechanical rule in the proof of the theorem (3.6). Obviously, σxiσyjσykσyiσxjσykσyiσyjσxkσxiσxjσxk=I, (i,j,kNn,ijki) is needless to prove the theorem (5.16). Of course, Gleason’s theorem is needless. Therefore, we can derive these inequalities (4.2) and (5.16) from more precise and weaker presupposition which should not be necessarily false.

You do not currently have access to this content.