The previous supersymmetric generalization of the unitary Harish-Chandra integral prompted the conjecture that the Harish-Chandra formula should have an extension to superspaces. We prove this conjecture for the unitary orthosymplectic supermanifold UOSp(k1/2k2). To this end, we construct and solve an eigenvalue equation.

1.
Harish-Chandra
,
Am. J. Math.
79
,
87
(
1957
).
2.
I. M.
Gelfand
,
Dokl. Akad. Nauk SSSR
70
,
5
(
1950
).
3.
S.
Helgason
, Groups and Geometric Analysis (Academic, San Diego,
1984
).
4.
Harish-Chandra
,
Am. J. Math.
94
,
241
(
1958
).
5.
M. A.
Olshanetsky
and
A. M.
Perelomov
,
Phys. Rep.
94
,
313
(
1983
).
6.
C.
Itzykson
and
J. B.
Zuber
,
J. Math. Phys.
21
,
411
(
1980
);
C.
Itzykson
and
J. B.
Zuber
,
Phys. Rep.
129
,
367
(
1985
).
7.
T.
Guhr
,
J. Math. Phys.
32
,
336
(
1991
).
8.
T.
Guhr
,
Commun. Math. Phys.
176
,
555
(
1996
).
9.
J.
Alfaro
,
R.
Medina
, and
L.
Urrutia
,
J. Math. Phys.
36
,
3085
(
1995
).
10.
V.
Serganova
(private communication).
11.
M. R.
Zirnbauer
,
J. Phys. A
29
,
7113
(
1996
).
12.
V. C.
Kac
,
Commun. Math. Phys.
53
,
31
(
1977
).
13.
V. C.
Kac
,
Adv. Math.
26
,
8
(
1977
).
14.
V.
Rittenberg
, A Guide to Lie Superalgebras, Lecture Notes in Physics (Springer–Verlag, Berlin,
1977
), Vol,
79
.
15.
F. A.
Berezin
, Introduction to Superanalysis, MPAM9 (Reidel, Dordrecht,
1987
).
16.
V.
Serganova
,
Funct. Anal. Appl.
17
,
46
(
1983
).
17.
M.
Parker
,
J. Math. Phys.
21
,
689
(
1980
).
18.
J.
Bernstein
, in Quantum Fields and Strings II, edited by
P.
Deligne
,
P.
Etingof
, and
D. S.
Freed
(AMS, New York,
1999
), p.
41
.
19.
D. A.
Leites
,
Usp. Mat. Nauk
35
,
3
(
1980
).
20.
M.
Zirnbauer
,
J. Math. Phys.
37
,
4986
(
1996
).
21.
K.
Efetov
,
Adv. Phys.
32
,
53
(
1983
).
22.
M. J.
Rothstein
,
Trans. Am. Math. Soc.
299
,
387
(
1987
).
23.
E.
Brézin
, in Two Dimensional Quantum Gravity and Random Surfaces, edited by
D. J.
Gross
,
T.
Piran
, and
S.
Weinberg
(World Scientific, Singapore,
1992
), p.
37
.
24.
F. A.
Berezin
and
F. I.
Karpelevich
,
Dokl. Akad. Nauk SSSR
118
,
9
(
1958
).
25.
B.
Hoogenboom
,
Ark. Mat., Astron. Fys.
20
,
69
(
1982
).
26.
T.
Guhr
and
T.
Wettig
,
J. Math. Phys.
37
,
6395
(
1996
).
27.
A. D.
Jackson
,
M. K.
Sener
, and
J. J. M.
Verbaarschot
,
Nucl. Phys. B
506
,
612
(
1997
).
28.
T.
Guhr
and
H.
Kohler
, math-ph/0011007.
29.
T.
Guhr
and
H.
Kohler
,
J. Math. Phys.
43
,
2707
(
2002
).
30.
T.
Guhr
and
H.
Kohler
, math-ph/0012047.
31.
T.
Guhr
and
H.
Kohler
,
J. Math. Phys.
43
,
2741
(
2002
).
32.
A. B.
Balantekin
,
Phys. Rev. D
62
,
085017
(
2000
);
A. B.
Balantekin
, hep-th/0007161.
33.
A. B.
Balantekin
,
Phys. Rev. E
64
,
066105
(
2001
);
A. B.
Balantekin
, cond-mat/0109112.
34.
B.
Schlittgen
and
T.
Wettig
,
J. Phys. A
36
,
3195
(
2003
);
B.
Schlittgen
and
T.
Wettig
, math-ph/0209030.
35.
P.
Zinn-Justin
and
J. B.
Zuber
,
J. Phys. A
36
,
3173
(
2003
);
P.
Zinn-Justin
and
J. B.
Zuber
, math-ph/0209019.
36.
A. B.
Balantekin
and
P.
Cassak
,
J. Math. Phys.
43
,
604
(
2002
).
37.
I. M.
Gelfand
and
M. L.
Tzetlin
,
Dokl. Akad. Nauk
71
,
825
(
1950
).
38.
A. O.
Barut
and
R.
Raczka
, Theory of Group Representations and Applications (Polish Scientific Publishers, Warszawa,
1980
).
39.
S. L.
Shatashvili
,
Commun. Math. Phys.
154
,
421
(
1993
).
40.
J. J. M.
Verbaatschot
,
H.
Weidenmüller
, and
M.
Zirnbauer
,
Phys. Rep.
129
,
369
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.