To treat the front-form Hamiltonian approach to quantum field theory, called light cone quantum field theory, in a mathematically rigorous way, the existence of a well-defined restriction of the corresponding free fields to the hypersurface {x0+x3=0} in Minkowski space is of an essential necessity. However, even in the situation of a real scalar free field such a restriction does canonically not exist; this is called the restriction problem. Furthermore, since the beginning of light cone quantum field theory there is the problem of nonexistence of a well-defined Fock space expansion of a free quantum field in terms of light cone momenta which is called the zero-mode problem. In this paper we present solutions to these long outstanding problems where the study of the zero-mode problem (of the corresponding classical field) will lead us to a solution of the restriction problem. We introduce a new function space of “squeezed” smooth functions which can canonically be embedded into the Schwartz space S(R3). The restriction of the free field to {x0+x3=0} is canonically definable on this function space and we show that the covariant field is uniquely determined by this “tame” restriction.

1.
Atiyah, M. F. and MacDonald, I. G., Introduction to Commutative Algebra (Addison–Wesley, Reading, 1969).
2.
Bauer, H., Maß- und Integrationstheorie (de Gruyter, Berlin, 1990).
3.
Bogolubov, N. N., Logunov, A. A., Oksak, A. I., and Todorov, I. T., General Principles of Quantum Field Theory (Kluwer, Dordrecht, 1990).
4.
Brodsky
,
S. J.
and
Pauli
,
H.-C.
,
Phys. Lett., C
301C
,
299
(
1998
),
Brodsky
,
S. J.
and
Pauli
,
H.-C.
, hep-ph/9705477.
5.
Carlitz
,
P.
,
Heckathorn
,
D.
,
Knaur
,
J.
, and
Tung
,
W. K.
,
Phys. Rev. D
11
,
1234
(
1975
).
6.
Chang
,
S.
,
Root
,
G.
, and
Yan
,
T.
,
Phys. Rev. D
7
,
1133
(
1973
).
7.
Dirac
,
P. A. M.
,
Rev. Mod. Phys.
21
,
392
(
1949
).
8.
Driessler
,
W.
,
Acta Phys. Austriaca
46
,
63
(
1977
).
9.
Driessler
,
W.
,
Acta Phys. Austriaca
46
,
163
(
1977
).
10.
Harindranath
,
A.
and
Vang
,
J. P.
,
Phys. Rev. D
37
,
3010
(
1988
).
11.
Hörmander, L., The Analysis of Linear Partial Differential Operators I (Springer, Berlin, 1990).
12.
Hörmander, L., The Analysis of Linear Partial Differential Operators II (Springer, Berlin, 1990).
13.
Leutwyler
,
H.
,
Klauder
,
J. R.
, and
Streit
,
L.
,
Nuovo Cimento A
66
,
536
(
1970
).
14.
Leutwyler
,
H.
and
Stern
,
J.
,
Ann. Phys. (N.Y.)
112
,
94
(
1978
).
15.
Ligterink
,
N. E.
and
Bakker
,
B. L. G.
,
Phys. Rev. D
52
,
5954
(
1995
).
16.
Reed, M. and Simon, B., Methods of Modern Mathematical Physics II (Academic London, 1975).
17.
Rudin, W., Functional Analysis (Tata McGraw–Hill, New Delhi, Reprint 1990).
18.
Schlieder
,
S.
, and
Seiler
,
E
.,
Commun. Math. Phys.
25
,
62
(
1972
).
19.
Schweber, S. S., An Introduction to Relativistic Quantum Field Theory (Harper & Row, New York, 1962).
20.
Streater, R. F. and Wightman, A. S., PCT, Spin & Statistics, and All That (Benjamin, New York, 1964).
21.
Ullrich, P., preprint, 2003.
22.
We will treat mainly one-component fields, however, all ideas in this paper can easily be transferred to spinor- and vector-fields.
23.
We suppress the dimension in the notation.
24.
This means 〈χ,ã(g)ψ〉=∫p+>0(d3/2p+)〈χ,ã()ψ〉 for all χ, ψ (the same also for ã+).
This content is only available via PDF.
You do not currently have access to this content.