We perform the complete group classification in the class of nonlinear Schrödinger equations of the form where is an arbitrary complex-valued potential depending on and γ is a real nonzero constant. We construct all the possible inequivalent potentials for which these equations have nontrivial Lie symmetries using a combination of algebraic and compatibility methods. The proposed approach can be applied to solving group classification problems for a number of important classes of differential equations arising in mathematical physics.
REFERENCES
1.
Akhatov
, I. Sh.
, Gazizov
, R. K.
, and Ibragimov
, N. Kh.
, “Group classification of equations of nonlinear filtration
,” Dokl. Akad. Nauk SSSR
293
, 1033
–1035
(1987
) (in Russian).2.
Akhatov
, I. Sh.
, Gazizov
, R. K.
, and Ibragimov
, N. Kh.
, “Nonlocal symmetries: A heuristic approach
,” J. Sov. Math.
55
, 1401
–1450
(1991
);Itogi Nauki i Tekhniki, Current Problems in Mathematics. Newest results (Moscow, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform 1989), Vol. 34, pp. 3–83 (in Russian).
3.
Carles
, R.
, “Critical nonlinear Schrödinger equations with and without harmonic potential
,” Math. Methods Appl. Sci.
12
, 1513
–1523
(2002
).4.
Doebner
, H.-D.
and Goldin
, G. A.
, “Properties of nonlinear Schrödinger equations associated with diffeomorphism group representations
,” J. Phys. A
27
, 1771
–1780
(1994
).5.
Doebner
, H.-D.
, Goldin
, G. A.
, and Nattermann
, P.
, “Gauge transformations in quantum mechanics and the unification of nonlinear Schrödinger equations
,” J. Math. Phys.
40
, 49
–63
(1999
).6.
Faddeev, L. D. and Takhtajan, L. A., Hamiltonian Methods in the Theory of Solitons (translated from Russian by A. G. Reyman), Springer Series in Soviet Mathematics (Springer-Verlag, Berlin, 1987).
7.
Fushchych
, W. I.
and Moskaliuk
, S. S.
, “On some exact solutions of the nonlinear Schrödinger equations in three spatial dimensions
,” Lett. Nuovo Cimento Soc. Ital. Fis.
31
, 571
–576
(1981
).8.
Gagnon
, L.
and Winternitz
, P.
, “Lie symmetries of a generalized nonlinear Schrödinger equation. I. The symmetry group and its subgroups
,” J. Phys. A
21
, 1493
–1511
(1988
).9.
Gagnon
, L.
and Winternitz
, P.
, “Lie symmetries of a generalized nonlinear Schrödinger equation: II. Exact solutions
,” J. Phys. A
22
, 469
–497
(1989
).10.
Gagnon
, L.
and Winternitz
, P.
, “Lie symmetries of a generalized nonlinear Schrödinger equation: III. Reductions to third-order ordinary differential equations
,” J. Phys. A
22
, 499
–509
(1989
).11.
Gagnon
, L.
and Winternitz
, P.
, “Exact solutions of the cubic and quintic nonlinear Schrödinger equation for a cylindrical geometry
,” Phys. Rev. A
39
, 296
–306
(1989
).12.
Gagnon
, L.
and Wintenitz
, P.
, “Symmetry classes of variable coefficient nonlinear Schrödinger equations
,” J. Phys. A
26
, 7061
–7076
(1993
).13.
Ivanova, N., “Symmetry of nonlinear Schrödinger equations with harmonic oscillator type potential,” in Proceedings of Fourth International Conference “Symmetry in Nonlinear Mathematical Physics,” edited by A. G. Nikitin, V. M. Boyko, and R. O. Popovych in Proceedings of the Institute of Mathematics, 2002, Vol. 43, Pt. 1, pp. 149 and 150.
14.
Lie
, S.
, “Über die Integration durch bestimmte Integrale von einer Klasse linear partieller Differentialgleichung
,” Arch. Math.
6
, 328
–368
(1881
). (Translation by N. H. Ibragimov and S. Lie, “On integration of a Class of Linear Partial Differential Equations by Means of Definite Integrals,” CRC Handbook of Lie Group Analysis of Differential Equations (1994), Vol. 2, pp. 473–508.)15.
Miller, W., Symmetry and Separation of Variables (Addison-Wesley, Reading, 1977).
16.
Nattermann
, P.
and Doebner
, H.-D.
, “Gauge classification, Lie symmetries, and integrability of a family of nonlinear Schrödinger equations
,” J. Nonlinear Math. Phys.
3
, 302
–310
(1996
).17.
Niederer
, U.
, “The maximal kinematical invariance group of the free Schrödinger equation
,” Helv. Phys. Acta
45
, 802
–810
(1972
).18.
Niederer
, U.
, “The maximal kinematical invariance group of the harmonic oscillator
,” Helv. Phys. Acta
46
, 191
–200
(1973
).19.
Nikitin
, A. G.
and Popovych
, R. O.
, “Group classification of nonlinear Schrödinger equations
,” Ukr. Mat. Zh.
53
, 1255
–1265
(2001
).20.
Olver, P., Applications of Lie Groups to Differential Equations (Springer-Verlag, New York, 1989).
21.
Ovsiannikov, L. V., Group Analysis of Differential Equations (Academic, New York, 1982).
22.
Popovych
, R. O.
and Ivanova
, N. M.
, “New results on group classification of nonlinear diffusion-convection equations
,” math-ph/0306035, 19 p.23.
Popovych
, R. O.
and Ivanova
, N. M.
, and Eshraghi
, H.
, “Lie symmetries of -dimensional cubic Schrödinger equation with potential
,” math-ph/0312055, 6 p.24.
Popovych
, R. O.
Yehorchenko
, I. A.
, “Group classification of generalized eikonal equations
,” Ukr. Mat. Zh.
53
, 1841
–1850
(2001
) (see math-ph/0112055 for the extended version).25.
Zhdanov
, R. Z.
and Lahno
, V. I.
, “Group classification of heat conductivity equations with a nonlinear source
,” J. Phys. A
32
, 7405
–7418
(1999
).26.
Zhdanov
, R.
and Roman
, O.
, “On preliminary symmetry classification of nonlinear Schrödinger equation with some applications of Doebner–Goldin models
,” Rep. Math. Phys.
45
, 273
–291
(2000
).
This content is only available via PDF.
© 2004 American Institute of Physics.
2004
American Institute of Physics
You do not currently have access to this content.