We perform the complete group classification in the class of nonlinear Schrödinger equations of the form txx+|ψ|γψ+V(t,x)ψ=0, where V is an arbitrary complex-valued potential depending on t and x, γ is a real nonzero constant. We construct all the possible inequivalent potentials for which these equations have nontrivial Lie symmetries using a combination of algebraic and compatibility methods. The proposed approach can be applied to solving group classification problems for a number of important classes of differential equations arising in mathematical physics.

1.
Akhatov
,
I. Sh.
,
Gazizov
,
R. K.
, and
Ibragimov
,
N. Kh.
, “
Group classification of equations of nonlinear filtration
,”
Dokl. Akad. Nauk SSSR
293
,
1033
1035
(
1987
) (in Russian).
2.
Akhatov
,
I. Sh.
,
Gazizov
,
R. K.
, and
Ibragimov
,
N. Kh.
, “
Nonlocal symmetries: A heuristic approach
,”
J. Sov. Math.
55
,
1401
1450
(
1991
);
Itogi Nauki i Tekhniki, Current Problems in Mathematics. Newest results (Moscow, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform 1989), Vol. 34, pp. 3–83 (in Russian).
3.
Carles
,
R.
, “
Critical nonlinear Schrödinger equations with and without harmonic potential
,”
Math. Methods Appl. Sci.
12
,
1513
1523
(
2002
).
4.
Doebner
,
H.-D.
and
Goldin
,
G. A.
, “
Properties of nonlinear Schrödinger equations associated with diffeomorphism group representations
,”
J. Phys. A
27
,
1771
1780
(
1994
).
5.
Doebner
,
H.-D.
,
Goldin
,
G. A.
, and
Nattermann
,
P.
, “
Gauge transformations in quantum mechanics and the unification of nonlinear Schrödinger equations
,”
J. Math. Phys.
40
,
49
63
(
1999
).
6.
Faddeev, L. D. and Takhtajan, L. A., Hamiltonian Methods in the Theory of Solitons (translated from Russian by A. G. Reyman), Springer Series in Soviet Mathematics (Springer-Verlag, Berlin, 1987).
7.
Fushchych
,
W. I.
and
Moskaliuk
,
S. S.
, “
On some exact solutions of the nonlinear Schrödinger equations in three spatial dimensions
,”
Lett. Nuovo Cimento Soc. Ital. Fis.
31
,
571
576
(
1981
).
8.
Gagnon
,
L.
and
Winternitz
,
P.
, “
Lie symmetries of a generalized nonlinear Schrödinger equation. I. The symmetry group and its subgroups
,”
J. Phys. A
21
,
1493
1511
(
1988
).
9.
Gagnon
,
L.
and
Winternitz
,
P.
, “
Lie symmetries of a generalized nonlinear Schrödinger equation: II. Exact solutions
,”
J. Phys. A
22
,
469
497
(
1989
).
10.
Gagnon
,
L.
and
Winternitz
,
P.
, “
Lie symmetries of a generalized nonlinear Schrödinger equation: III. Reductions to third-order ordinary differential equations
,”
J. Phys. A
22
,
499
509
(
1989
).
11.
Gagnon
,
L.
and
Winternitz
,
P.
, “
Exact solutions of the cubic and quintic nonlinear Schrödinger equation for a cylindrical geometry
,”
Phys. Rev. A
39
,
296
306
(
1989
).
12.
Gagnon
,
L.
and
Wintenitz
,
P.
, “
Symmetry classes of variable coefficient nonlinear Schrödinger equations
,”
J. Phys. A
26
,
7061
7076
(
1993
).
13.
Ivanova, N., “Symmetry of nonlinear Schrödinger equations with harmonic oscillator type potential,” in Proceedings of Fourth International Conference “Symmetry in Nonlinear Mathematical Physics,” edited by A. G. Nikitin, V. M. Boyko, and R. O. Popovych in Proceedings of the Institute of Mathematics, 2002, Vol. 43, Pt. 1, pp. 149 and 150.
14.
Lie
,
S.
, “
Über die Integration durch bestimmte Integrale von einer Klasse linear partieller Differentialgleichung
,”
Arch. Math.
6
,
328
368
(
1881
). (Translation by N. H. Ibragimov and S. Lie, “On integration of a Class of Linear Partial Differential Equations by Means of Definite Integrals,” CRC Handbook of Lie Group Analysis of Differential Equations (1994), Vol. 2, pp. 473–508.)
15.
Miller, W., Symmetry and Separation of Variables (Addison-Wesley, Reading, 1977).
16.
Nattermann
,
P.
and
Doebner
,
H.-D.
, “
Gauge classification, Lie symmetries, and integrability of a family of nonlinear Schrödinger equations
,”
J. Nonlinear Math. Phys.
3
,
302
310
(
1996
).
17.
Niederer
,
U.
, “
The maximal kinematical invariance group of the free Schrödinger equation
,”
Helv. Phys. Acta
45
,
802
810
(
1972
).
18.
Niederer
,
U.
, “
The maximal kinematical invariance group of the harmonic oscillator
,”
Helv. Phys. Acta
46
,
191
200
(
1973
).
19.
Nikitin
,
A. G.
and
Popovych
,
R. O.
, “
Group classification of nonlinear Schrödinger equations
,”
Ukr. Mat. Zh.
53
,
1255
1265
(
2001
).
20.
Olver, P., Applications of Lie Groups to Differential Equations (Springer-Verlag, New York, 1989).
21.
Ovsiannikov, L. V., Group Analysis of Differential Equations (Academic, New York, 1982).
22.
Popovych
,
R. O.
and
Ivanova
,
N. M.
, “
New results on group classification of nonlinear diffusion-convection equations
,” math-ph/0306035, 19 p.
23.
Popovych
,
R. O.
and
Ivanova
,
N. M.
, and
Eshraghi
,
H.
, “
Lie symmetries of (1+1)-dimensional cubic Schrödinger equation with potential
,” math-ph/0312055, 6 p.
24.
Popovych
,
R. O.
Yehorchenko
,
I. A.
, “
Group classification of generalized eikonal equations
,”
Ukr. Mat. Zh.
53
,
1841
1850
(
2001
) (see math-ph/0112055 for the extended version).
25.
Zhdanov
,
R. Z.
and
Lahno
,
V. I.
, “
Group classification of heat conductivity equations with a nonlinear source
,”
J. Phys. A
32
,
7405
7418
(
1999
).
26.
Zhdanov
,
R.
and
Roman
,
O.
, “
On preliminary symmetry classification of nonlinear Schrödinger equation with some applications of Doebner–Goldin models
,”
Rep. Math. Phys.
45
,
273
291
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.