Our main objective in this paper is to clarify the ontology of Dirac–Hestenes spinor fields (DHSF) and its relationship with even multivector fields, on a Riemann–Cartan spacetime (RCST) admitting a spin structure, and to give a mathematically rigorous derivation of the so-called Dirac–Hestenes equation (DHE) in the case where 𝔐 is a Lorentzian spacetime (the general case when 𝔐 is a RCST will be discussed in another publication). To this aim we introduce the Clifford bundle of multivector fields and the left and right spin-Clifford bundles on the spin manifold The relation between left ideal algebraic spinor fields (LIASF) and Dirac–Hestenes spinor fields (both fields are sections of ) is clarified. We study in detail the theory of covariant derivatives of Clifford fields as well as that of left and right spin-Clifford fields. A consistent Dirac equation for a DHSF (denoted on a Lorentzian spacetime is found. We also obtain a representation of the in the Clifford bundle It is such equation that we call the DHE and it is satisfied by Clifford fields This means that to each DHSF and spin frame there is a well-defined sum of even multivector fields (EMFS) associated with Ψ. Such an EMFS is called a representative of the DHSF on the given spin frame. And, of course, such a EMFS (the representative of the DHSF) is not a spinor field. With this crucial distinction between a DHSF and its representatives on the Clifford bundle, we provide a consistent theory for the covariant derivatives of Clifford and spinor fields of all kinds. We emphasize that the and the DHE, although related, are equations of different mathematical natures. We study also the local Lorentz invariance and the electromagnetic gauge invariance and show that only for the DHE such transformations are of the same mathematical nature, thus suggesting a possible link between them.
Skip Nav Destination
Article navigation
July 2004
Research Article|
June 14 2004
The bundles of algebraic and Dirac–Hestenes spinor fields
Ricardo A. Mosna;
Ricardo A. Mosna
Institute of Physics Gleb Wataghin, UNICAMP CP 6165, 13083-970 Campinas, SP Brazil
Institute of Mathematics, Statistics and Scientific Computation, IMECC-UNICAMP CP 6065, 13083-970 Campinas, SP Brazil
Search for other works by this author on:
Waldyr A. Rodrigues, Jr.
Waldyr A. Rodrigues, Jr.
Institute of Mathematics, Statistics and Scientific Computation, IMECC-UNICAMP CP 6065, 13083-970 Campinas, SP Brazil
Search for other works by this author on:
J. Math. Phys. 45, 2945–2966 (2004)
Article history
Received:
November 25 2003
Accepted:
April 05 2004
Citation
Ricardo A. Mosna, Waldyr A. Rodrigues; The bundles of algebraic and Dirac–Hestenes spinor fields. J. Math. Phys. 1 July 2004; 45 (7): 2945–2966. https://doi.org/10.1063/1.1757038
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00
Citing articles via
Related Content
Algebraic and Dirac–Hestenes spinors and spinor fields
J. Math. Phys. (June 2004)
The mean spherical approximation for a dipolar Yukawa fluid
J. Chem. Phys. (April 1999)
The Dirac equation and Hestenes’ geometric algebra
J. Math. Phys. (June 1984)
Pauli spinors and Hestenes’ geometric algebra
American Journal of Physics (January 1984)
A new modification of Hestenes-Stiefel method with descent properties
AIP Conference Proceedings (June 2014)