In this paper, we present a new entanglement monotone for bipartite quantum states. Its definition is inspired by the so-called intrinsic information of classical cryptography and is given by the halved minimum quantum conditional mutual information over all tripartite state extensions. We derive certain properties of the new measure which we call “squashed entanglement”: it is a lower bound on entanglement of formation and an upper bound on distillable entanglement. Furthermore, it is convex, additive on tensor products, and superadditive in general. Continuity in the state is the only property of our entanglement measure which we cannot provide a proof for. We present some evidence, however, that our quantity has this property, the strongest indication being a conjectured Fannes-type inequality for the conditional von Neumann entropy. This inequality is proved in the classical case.

1.
Bennett
,
C. H.
,
Brassard
,
G.
,
Popescu
,
S.
,
Schumacher
,
B.
,
Smolin
,
J. A.
, and
Wootters
,
W. K.
, “
Purification of noisy entanglement and faithful teleportation via noisy channels
,”
Phys. Rev. Lett.
76
,
722
725
(
1996
);
Bennett
,
C. H.
,
Brassard
,
G.
,
Popescu
,
S.
,
Schumacher
,
B.
,
Smolin
,
J. A.
, and
Wootters
,
W. K.
,
Phys. Rev. Lett.
78
,
2031
(E) (
1997
).
2.
Bennett
,
C. H.
,
DiVincenzo
,
D. P.
,
Smolin
,
J. A.
, and
Wootters
,
W. K.
, “
Mixed-state entanglement and quantum error correction
,”
Phys. Rev. A
54
,
3824
3851
(
1996
).
3.
Cerf
,
N. J.
, and
Adami
,
C.
, “
Negative entropy and information in quantum mechanics
,”
Phys. Rev. Lett.
79
,
5194
5197
(
1997
);
Cerf
,
N. J.
, and
Adami
,
C.
, “
Quantum information theory of entanglement and measurement
,”
Physica D
120
,
68
91
(
1998
).
4.
Christandl, M., “The quantum analog to intrinsic information,” Diploma thesis, ETH Zürich, 2002 (unpublished).
5.
Christandl, M., Renner, R., and Wolf, S., “A property of the intrinsic mutual information,” in Proc. ISIT 2003, Yokohama, Japan, p. 258.
6.
Davies
,
E. B.
, and
Lewis
,
J. T.
, “
An operational approach to quantum probability
,”
Commun. Math. Phys.
17
,
239
260
(
1970
).
7.
Devetak
,
I.
, and
Winter
,
A.
, “
Distillation of secret key and entanglement from quantum states
,” quant-ph/0306078, 2003;
Horodecki, M. and Horodecki, P., “Hashing inequality” (in preparation).
8.
Eisert
,
J.
,
Audenaert
,
K.
, and
Plenio
,
M. B.
, “
Remarks on entanglement measures and non-local state distinguishability
,”
J. Phys. A
36
,
5605
5615
(
2003
).
9.
Fannes
,
M.
, “
A continuity property of the entropy density for spin lattice systems
,”
Commun. Math. Phys.
31
,
291
294
(
1973
).
10.
Fuchs
,
C. A.
, and
van de Graaf
,
J.
, “
Cryptographic distinguishability measures for quantum-mechanical states
,”
IEEE Trans. Inf. Theory
45
,
1216
1227
(
1999
).
11.
Gisin, N. and Wolf, S., “Linking classical and quantum key agreement: is there “bound information”?,” Advances in Cryptology-CRYPTO’00, Lecture Notes in Computer Science (Springer-Verlag, Berlin, 2000), pp. 482–500.
12.
Hayden
,
P. M.
,
Horodecki
,
M.
, and
Terhal
,
B. M.
, “
The asymptotic entanglement cost of preparing a quantum state
,”
J. Phys. A
34
,
6891
6898
(
2001
).
13.
Hayden
,
P.
,
Jozsa
,
R.
,
Petz
,
D.
, and
Winter
,
A.
, “
Structure of states which satisfy strong subadditivity of quantum entropy with equality
,” Commun. Math. Phys. (to be published), quant-ph/0304007.
14.
Horodecki
,
M.
, “
Entanglement measures
,”
Quantum Inf. Comput.
1
,
3
26
(
2001
).
15.
Horodecki
,
M.
,
Horodecki
,
P.
, and
Horodecki
,
R.
, “
Limits for entanglement measures
,”
Phys. Rev. Lett.
84
,
2014
2017
(
2000
).
16.
Jozsa
,
R.
, “
Fidelity for mixed quantum states
,”
J. Mod. Opt.
41
,
2315
2323
(
1994
).
17.
Lieb
,
E. H.
, and
Ruskai
,
M. B.
, “
Proof of the strong subadditivity of quantum-mechanical entropy. With an appendix by B. Simon
,”
J. Math. Phys.
14
,
1938
1941
(
1973
).
18.
Maurer
,
U.
, and
Wolf
,
S.
, “
Unconditionally secure key agreement and the intrinsic conditional information
,”
IEEE Trans. Inf. Theory
45
,
499
514
(
1999
).
19.
Nielsen, M. A., and Chuang, I. L., Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
20.
Popescu
,
S.
, and
Rohrlich
,
D.
, “
Thermodynamics and the measure of entanglement
,”
Phys. Rev. A
56
,
R3319
R3321
(
1997
).
21.
Rains
,
E. M.
, “
A semidefinite program for distillable entanglement
,”
IEEE Trans. Inf. Theory
47
,
2921
2933
(
2001
).
22.
Renner, R., and Wolf, S., “New bounds in secret-key agreement: The gap between formation and secrecy extraction,” Advances in Cryptology-EUROCRYPT’03, Lecture Notes in Computer Science (Springer-Verlag, Berlin, 2003), pp. 562–577.
23.
Rockafeller, R. T., Convex Analysis (Princeton University Press, Princeton, 1970).
24.
Shor
,
P. W.
, “
Equivalcne of additivity questions in quantum information theory,” Commun. Math. Phys. (to be published
), quant-ph/0305035.
25.
Shor
,
P. W.
,
Smolin
,
J. A.
, and
Terhal
,
B. M.
, “
Nonadditivity of bipartite distillable entanglement follows from a conjecture on bound entangled Werner states
,”
Phys. Rev. Lett.
86
,
2681
2684
(
2001
).
26.
Tucci
,
R. R.
, “
Quantum entanglement and conditional information transmission
,” quant-ph/9909041;
Tucci
,
R. R.
, “Enganglement of distillation and conditional mutual information,” quant-ph/0202144.
27.
Uhlmann
,
A.
, “
The “transition probability” in the state space of a sp-algebra
,”
Rep. Math. Phys.
9
,
273
279
(
1976
).
28.
Vedral
,
V.
,
Plenio
,
M. B.
,
Rippin
,
M. A.
, and
Knight
,
P. L.
, “
Quantifying entanglement
,”
Phys. Rev. Lett.
78
,
2275
2279
(
1997
).
29.
Vidal
,
G.
, “
Entanglement monotones
,”
J. Mod. Opt.
47
,
355
376
(
2000
).
30.
Vollbrecht
,
K. G. H.
, and
Werner
,
R. F.
, “
Entanglement measures under symmetry
,”
Phys. Rev. A
64
,
062307
(
2001
).
31.
Yura
,
F.
, “
Entanglement cost of three-level antisymmetric states
,”
J. Phys. A
36
,
L237
L242
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.