The exact computation of asymptotic quasinormal frequencies is a technical problem which involves the analytic continuation of a Schrödinger-type equation to the complex plane and then performing a method of monodromy matching at several poles in the plane. While this method was successfully used in asymptotically flat space–time, as applied to both the Schwarzschild and Reissner–Nordstro/m solutions, its extension to nonasymptotically flat space–times has not been achieved yet. In this work it is shown how to extend the method to this case, with the explicit analysis of Schwarzschild–de Sitter and large Schwarzschild–anti–de Sitter black holes, both in four dimensions. We obtain, for the first time, analytic expressions for the asymptotic quasinormal frequencies of these black hole space–times, and our results match previous numerical calculations with great accuracy. We also list some results concerning the general classification of asymptotic quasinormal frequencies in d-dimensional space–times.

1.
T.
Regge
and
J. A.
Wheeler
,
Phys. Rev.
108
,
1063
(
1957
).
2.
F. J.
Zerilli
,
Phys. Rev. D
2
,
2141
(
1970
).
3.
A.
Ishibashi
and
H.
Kodama
,
Prog. Theor. Phys.
110
,
701
(
2003
).
4.
A.
Ishibashi
and
H.
Kodama
, “
Stability of higher dimensional Schwarzschild black holes
,” hep-th/0305185.
5.
A.
Ishibashi
and
H.
Kodama
, “
Master equations for perturbations of generalized static black holes with charge in higher dimensions
,” hep-th/0308128.
6.
H-P.
Nollert
,
Class. Quantum Grav.
16
,
R159
(
1999
).
7.
K. D.
Kokkotas
and
B. G.
Schmidt
,
Living Rev. Relativ.
2
,
2
(
1999
).
10.
L.
Motl
,
Adv. Theor. Math. Phys.
6
,
1135
(
2003
).
11.
L.
Motl
and
A.
Neitzke
,
Adv. Theor. Math. Phys.
7
,
307
(
2003
).
12.
J.
Natário
and
R.
Schiappa
(unpublished).
13.
A.
Neitzke
, “
Greybody factors at large imaginary frequencies
,” hep-th/0304080.
14.
K.
Krasnov
and
S. N.
Solodukhin
, “
Effective stringy description of Schwarzschild black holes
,” hep-th/0403046.
15.
A. J. M.
Medved
,
D.
Martin
, and
M.
Visser
, “
Dirty black holes: quasinormal modes
,” gr-qc/0310009.
16.
T.
Padmanabhan
, “
Quasinormal modes: A simple derivation of the level spacing of the frequencies
,” gr-qc/0310027.
17.
A. J. M.
Medved
,
D.
Martin
, and
M.
Visser
, “
Dirty black holes: Quasinormal modes for “squeezed” horizons
,” gr-qc/0310097.
18.
T. R.
Choudhury
and
T.
Padmanabhan
, “
Quasinormal modes in Schwarzschild–de Sitter spacetime: A simple derivation of the level spacing of the frequencies
,” gr-qc/0311064.
19.
G. W.
Gibbons
and
S. W.
Hawking
,
Phys. Rev. D
15
,
2738
(
1977
).
20.
G. T.
Horowitz
and
V. E.
Hubeny
,
Phys. Rev. D
62
,
024027
(
2000
).
21.
V.
Cardoso
and
J. P. S.
Lemos
,
Phys. Rev. D
64
,
084017
(
2001
).
22.
S.
Chandrasekhar
, The Mathematical Theory of Black Holes (Oxford University Press, Oxford,
1998
).
23.
P.
Brady
,
C.
Chambers
,
W.
Laarakkers
, and
E.
Poisson
,
Phys. Rev. D
60
,
064003
(
1999
).
24.
V.
Cardoso
and
J. P. S.
Lemos
,
Phys. Rev. D
67
,
084020
(
2003
).
25.
V.
Suneeta
,
Phys. Rev. D
68
,
024020
(
2003
).
26.
K. H. C.
Castello-Branco
and
E.
Abdalla
, “
Analytic determination of the asymptotic quasinormal mode spectrum of small Schwarzschild–de Sitter black holes
,” gr-qc/0309090.
27.
A. J. M.
Medved
and
D.
Martin
, “
A note on quasinormal modes: a tale of two treatments
,” gr-qc/0311086.
28.
S.
Yoshida
and
T.
Futamase
, “
Numerical analysis of quasinormal modes in nearly extremal Schwarzschild de Sitter Spacetimes
,” gr-qc/0308077.
29.
R. A.
Konoplya
and
A.
Zhidenko
, “
High overtones of Schwarzschild de Sitter quasinormal spectrum
,” hep-th/0402080.
30.
S. J.
Avis
,
C. J.
Isham
, and
D.
Storey
,
Phys. Rev. D
18
,
3565
(
1978
).
31.
S. F. J.
Chan
and
R. B.
Mann
,
Phys. Rev. D
55
,
7546
(
1997
).
32.
M.
Giammatteo
and
J.
Jing
, “
Dirac quasinormal frequencies in Schwarzschild AdS spacetime
,” gr-qc/0403030.
33.
A. O.
Starinets
, “
Quasinormal modes of near extremal black branes
,” hep-th/0207133.
34.
A.
Núñez
and
A. O.
Starinets
, “
AdS/CFT correspondence, quasinormal modes, and thermal correlators in N=4 SYM
,” hep-th/0302026.
35.
S.
Musiri
and
G.
Siopsis
, “
Asymptotic form of quasinormal modes of large AdS black holes
,” hep-th/0308196.
36.
G.
Siopsis
, “
Large mass expansion of quasinormal modes in AdS5
,” hep-th/0402083.
37.
E.
Berti
and
K. D.
Kokkotas
,
Phys. Rev. D
67
,
064020
(
2003
).
38.
V.
Cardoso
,
R.
Konoplya
, and
J. P. S.
Lemos
,
Phys. Rev. D
68
,
044024
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.