This paper aims at presenting the first steps towards a formulation of the Exact Renormalization Group Equation in the Hopf algebra setting of Connes and Kreimer. It mostly deals with some algebraic preliminaries allowing us to formulate perturbative renormalization within the theory of differential equations. The relation between renormalization, formulated as a change of boundary condition for a differential equation, and an algebraic Birkhoff decomposition for rooted trees is explicited.
REFERENCES
1.
Brouder
, C.
, “Runge-Kutta methods and renormalization
,” Eur. Phys. J. C
12
, 521
–534
(2000
).2.
Butcher
, J. C.
, “An algebraic theory of integration methods
,” Math. Comput.
26
, 79
–106
(1972
).3.
Cayley
, A.
, “On the theory of analytical forms called trees
,” Philos. Mag.
13
, 172
–6
(1857
).4.
Connes
, A.
and Kreimer
, D.
, “Hopf algebras, renormalization and noncommutative geometry
,” Commun. Math. Phys.
199
, 203
(1998
);Connes
, A.
and Kreimer
, D.
, “Renormalization in quantum field theory and the Riemann–Hilbert problem I: the Hopf algebra structure of graphs and the main theorem
,”Commun. Math. Phys.
210
, 249
(2000
);Connes
, A.
and Kreimer
, D.
, “Renormalization in quantum field theory and the Riemann–Hilbert problem II: the -function, diffeomorphisms and the renormalization group
,”Commun. Math. Phys.
216
, 215
(2001
).5.
Cvitanović
, P.
, Field Theory, Nordita Lecture Notes, 1983
, available online at http://www.cns.gatech.edu/FieldTheory/.6.
Ebrahimi-Fard
, K.
, Guo
, L.
, and Kreimer
, D.
, “Spitzer’s identity and the Algebraic Birkhoff Decomposition in pQFT
,” hep-th/0407082;Ebrahimi-Fard
, K.
, Guo
, L.
, and Kreimer
, D.
, “Integrable renormalization I: the Ladder case
,” hep-th/0402095;Ebrahimi-Fard
, K.
, Guo
, L.
, and Kreimer
, D.
, “Integrable renormalization II: the general case
,” hep-th/0403118.7.
Figueroa
, H.
and Gracia Bondia
, J. M.
, “On the antipode of Kreimer’s Hopf algebra
,” Mod. Phys. Lett. A
16
, 1427
–1434
(2001
);8.
Gallavotti
, G.
and Nicolo
, F.
, “Renormalization theory in four dimensional scalar fields 1
,” Commun. Math. Phys.
100
, 545
(1985
);Gallavotti
, G.
and Nicolo
, F.
, “Renormalization theory in four dimensional scalar fields 2
,”Commun. Math. Phys.
101
, 247
(1985
).9.
Gracia-Bondia
, J.M.
, Varilly
, J.C.
, and Figueroa
, H.
, Elements of Noncommutative Geometry (Birkhauser, Boston, 2001
).10.
Hairer
, E.
and Wanner
, G.
, “On the Butcher group and general multi-value methods
,” Computing
13
, 1
–15
(1974
).11.
Hurd
, T.
, “A renormalization group proof of perturbative renormalizability
,” Commun. Math. Phys.
124
, 153
–168
(1989
).12.
Ionescu
, L. M.
and Marsalli
, M.
, “A Hopf algebra deformation approach to renormalization
,” hep-th/0307112.13.
Itzykson
, C.
and Zuber
, J.B.
, Quantum Field Theory (McGraw-Hill, New York, 1985
).14.
Le Bellac
, M.
, Des phnomnes critiques aux champs de jauge (InterEditions, Paris, 1990
).15.
Kastler
, D.
, “Connes-Moscovici-Kreimer Hopf algebras
,” Fields Inst. Commun.
30
, 219
–248
(2001
).16.
Kogut
, J.
and Wilson
, K.
, “The renormalization group and the -expansion
,” Phys. Rep.
12
, 75
(1974
).17.
Girelli
, F.
, Krajewski
, T.
, and Martinetti
, P.
, “Wave-Function renormalization and the Hopf algebra of Connes and Kreimer
,” Mod. Phys. Lett. A
16
, 299
–303
(2001
).18.
19.
Petermann
, A.
and Stueckelberg
, E.
, “The renormalization group in quantum theory
,” Helv. Phys. Acta
24
, 317
(1951
).20.
Polchinski
, J.
, “Renormalization and effective Lagrangians
,” Nucl. Phys. B
231
, 269
(1984
).21.
Rivasseau
, V.
, From Perturbative to Constructive Renormalisation (Princeton University Press, Princeton, NJ, 1991
).22.
Sakakibara
, M.
, “On the differential equations of the characters for the renormalization group
,” Mod. Phys. Lett. A
19
, 1453
–1456
(2004
),Sakakibara
, M.
, math-ph/0401048.23.
Wilson
, K. G.
, “Renormalization group methods
,” Adv. Math.
16
, 170
–186
(1975
).
This content is only available via PDF.
© 2004 American Institute of Physics.
2004
American Institute of Physics
You do not currently have access to this content.