This paper aims at presenting the first steps towards a formulation of the Exact Renormalization Group Equation in the Hopf algebra setting of Connes and Kreimer. It mostly deals with some algebraic preliminaries allowing us to formulate perturbative renormalization within the theory of differential equations. The relation between renormalization, formulated as a change of boundary condition for a differential equation, and an algebraic Birkhoff decomposition for rooted trees is explicited.

1.
Brouder
,
C.
, “
Runge-Kutta methods and renormalization
,”
Eur. Phys. J. C
12
,
521
534
(
2000
).
2.
Butcher
,
J. C.
, “
An algebraic theory of integration methods
,”
Math. Comput.
26
,
79
106
(
1972
).
3.
Cayley
,
A.
, “
On the theory of analytical forms called trees
,”
Philos. Mag.
13
,
172
6
(
1857
).
4.
Connes
,
A.
and
Kreimer
,
D.
, “
Hopf algebras, renormalization and noncommutative geometry
,”
Commun. Math. Phys.
199
,
203
(
1998
);
Connes
,
A.
and
Kreimer
,
D.
, “
Renormalization in quantum field theory and the Riemann–Hilbert problem I: the Hopf algebra structure of graphs and the main theorem
,”
Commun. Math. Phys.
210
,
249
(
2000
);
Connes
,
A.
and
Kreimer
,
D.
, “
Renormalization in quantum field theory and the Riemann–Hilbert problem II: the β-function, diffeomorphisms and the renormalization group
,”
Commun. Math. Phys.
216
,
215
(
2001
).
5.
Cvitanović
,
P.
, Field Theory, Nordita Lecture Notes,
1983
, available online at http://www.cns.gatech.edu/FieldTheory/.
6.
Ebrahimi-Fard
,
K.
,
Guo
,
L.
, and
Kreimer
,
D.
, “
Spitzer’s identity and the Algebraic Birkhoff Decomposition in pQFT
,” hep-th/0407082;
Ebrahimi-Fard
,
K.
,
Guo
,
L.
, and
Kreimer
,
D.
, “
Integrable renormalization I: the Ladder case
,” hep-th/0402095;
Ebrahimi-Fard
,
K.
,
Guo
,
L.
, and
Kreimer
,
D.
, “
Integrable renormalization II: the general case
,” hep-th/0403118.
7.
Figueroa
,
H.
and
Gracia Bondia
,
J. M.
, “
On the antipode of Kreimer’s Hopf algebra
,”
Mod. Phys. Lett. A
16
,
1427
1434
(
2001
);
Figueroa
,
H.
and
Gracia Bondia
,
J. M.
, hep-th/9912170.
8.
Gallavotti
,
G.
and
Nicolo
,
F.
, “
Renormalization theory in four dimensional scalar fields 1
,”
Commun. Math. Phys.
100
,
545
(
1985
);
Gallavotti
,
G.
and
Nicolo
,
F.
, “
Renormalization theory in four dimensional scalar fields 2
,”
Commun. Math. Phys.
101
,
247
(
1985
).
9.
Gracia-Bondia
,
J.M.
,
Varilly
,
J.C.
, and
Figueroa
,
H.
, Elements of Noncommutative Geometry (Birkhauser, Boston,
2001
).
10.
Hairer
,
E.
and
Wanner
,
G.
, “
On the Butcher group and general multi-value methods
,”
Computing
13
,
1
15
(
1974
).
11.
Hurd
,
T.
, “
A renormalization group proof of perturbative renormalizability
,”
Commun. Math. Phys.
124
,
153
168
(
1989
).
12.
Ionescu
,
L. M.
and
Marsalli
,
M.
, “
A Hopf algebra deformation approach to renormalization
,” hep-th/0307112.
13.
Itzykson
,
C.
and
Zuber
,
J.B.
, Quantum Field Theory (McGraw-Hill, New York,
1985
).
14.
Le Bellac
,
M.
, Des phnomnes critiques aux champs de jauge (InterEditions, Paris,
1990
).
15.
Kastler
,
D.
, “
Connes-Moscovici-Kreimer Hopf algebras
,”
Fields Inst. Commun.
30
,
219
248
(
2001
).
16.
Kogut
,
J.
and
Wilson
,
K.
, “
The renormalization group and the ε-expansion
,”
Phys. Rep.
12
,
75
(
1974
).
17.
Girelli
,
F.
,
Krajewski
,
T.
, and
Martinetti
,
P.
, “
Wave-Function renormalization and the Hopf algebra of Connes and Kreimer
,”
Mod. Phys. Lett. A
16
,
299
303
(
2001
).
18.
Morris
,
T.
, “
Elements of the continuous renormalization group
,” hep-th/9802039.
19.
Petermann
,
A.
and
Stueckelberg
,
E.
, “
The renormalization group in quantum theory
,”
Helv. Phys. Acta
24
,
317
(
1951
).
20.
Polchinski
,
J.
, “
Renormalization and effective Lagrangians
,”
Nucl. Phys. B
231
,
269
(
1984
).
21.
Rivasseau
,
V.
, From Perturbative to Constructive Renormalisation (Princeton University Press, Princeton, NJ,
1991
).
22.
Sakakibara
,
M.
, “
On the differential equations of the characters for the renormalization group
,”
Mod. Phys. Lett. A
19
,
1453
1456
(
2004
),
Sakakibara
,
M.
, math-ph/0401048.
23.
Wilson
,
K. G.
, “
Renormalization group methods
,”
Adv. Math.
16
,
170
186
(
1975
).
This content is only available via PDF.
You do not currently have access to this content.