A new geometrical framework for tetrad-affine formulation of gravity, pure or coupled with Yang–Mills fields, is proposed. After analyzing the geometrical properties of the new mathematical setting, field equations are deduced from a variational principle in the Poincaré–Cartan formalism. A generalized Noether Theorem is stated and classical relationship between symmetries and conserved quantities are recovered in the newer scheme. Some explicit examples are given.

1.
R.
Cianci
,
S.
Vignolo
, and
D.
Bruno
,
J. Phys. A
36
,
8341
(
2003
).
2.
R.
Cianci
,
S.
Vignolo
, and
D.
Bruno
,
J. Phys. A
37
,
2519
(
2004
).
3.
W.
Thirring
, Classical Field Theory (Springer-Verlag, Berlin,
1979
).
4.
D.
Bleecker
, Gauge Theory and Variational Principles (Addison-Wesley, Reading, MA,
1981
).
5.
M.
Göckeler
and
T.
Schücker
, Differential Geometry, Gauge Theories and Gravity (Cambridge University, New York,
1987
).
6.
M.E.
Mayer
, Introduction to the Fiber-Bundle Approach to Gauge Theories, Lectures Notes in Physics (Springer-Verlag, Heidelberg,
1977
), Vol.
67
.
7.
K.B.
Marathe
and
G.
Martucci
, The Mathematical Foundations of Gauge Theories, Studies in Mathematical Physics (North-Holland, Amsterdam,
1992
), Vol.
5
.
8.
L.
Fatibene
,
M.
Ferraris
,
M.
Francaviglia
, and
M.
Godina
, Proceedings of the 6th International Conference on Differential Geometry and its Applications (Brno, Czech Republic, 1995),
1996
, pp.
549
558
.
9.
L.
Fatibene
,
M.
Ferraris
,
M.
Francaviglia
, and
M.
Godina
,
Gen. Relativ. Gravit.
30
,
1371
(
1998
).
10.
M.
Godina
,
P.
Matteucci
,
L.
Fatibene
, and
M.
Francaviglia
,
Gen. Relativ. Gravit.
32
,
145
(
2000
).
11.
M.
Godina
and
P.
Matteucci
,
J. Geom. Phys.
47
,
66
(
2003
).
12.
M.
Ferraris
,
M.
Francaviglia
, and
M.
Raiteri
,
Class. Quantum Grav.
20
,
3721
(
2003
).
13.
L.
Fatibene
and
M.
Francaviglia
, Natural and Gauge Natural Formalism for Classical Field Theories. A Geometric Perspective Including Spinors and Gauge Theories (Kluwer Academic, Dordrecht,
2003
).
14.
M.
Ferraris
,
M.
Francaviglia
, and
I.
Volovich
,
Nuovo Cimento Soc. Ital. Fis., B
110
,
253
(
1995
).
15.
L.
Fatibene
,
M.
Ferraris
,
M.
Francaviglia
, and
R. G.
McLenaghan
,
J. Math. Phys.
43
,
3147
(
2002
).
16.
D.J.
Saunders
, The Geometry of Jet Bundles, London Mathematical Society, Lecture Note Series 142 (Cambridge University Press, Cambridge,
1989
).
This content is only available via PDF.
You do not currently have access to this content.