We consider the convex set of positive operator valued measures (POVM) which are covariant under a finite dimensional unitary projective representation of a group. We derive a general characterization for the extremal points, and provide bounds for the ranks of the corresponding POVM densities, also relating extremality to uniqueness and stability of optimized measurements. Examples of applications are given.
REFERENCES
1.
I.L.
Chuang
and M.A.
Nielsen
, Quantum Information and Quantum Computation (Cambridge University Press, Cambridge, 2000
).2.
N.
Gisin
, G.
Ribordy
, W.
Tittel
, and H.
Zbinden
, Rev. Mod. Phys.
74
, 145
(2002
).3.
C.W.
Helstrom
, Quantum Detection and Estimation Theory (Academic, New York, 1976
).4.
A.S.
Holevo
, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam 1982
).5.
G. M.
D’Ariano
, P.
Lo Presti
, and M. G. A.
Paris
, Phys. Rev. Lett.
87
, 270404
(2001
).6.
A.
Acin
, E.
Jane
, and G.
Vidal
, Phys. Rev. A
64
, 050302
(2001
).7.
G. M.
D’Ariano
, C.
Macchiavello
, and M. F.
Sacchi
, Phys. Lett. A
248
, 103
(1998
).8.
G.
Chiribella
, G.M.
D’Ariano
, P.
Perinotti
, and M.F.
Sacchi
, Phys. Rev. Lett.
(to be published), quant-ph/0405095.9.
G.M.
D’Ariano
, J. Math. Phys.
(to be published).10.
11.
Notice that in infinite dimensions the POVM density, whence , can become unbounded, or not even anymore an operator, and it can be treated rigorously in the framework of forms.
12.
D.P.
Zhelobenko
, Compact Lie Groups and Their Representations (American Mathematical Society, Providence, RI, 1973
).13.
G.
Chiribella
, G.M.
D’Ariano
, P.
Perinotti
, and M.F.
Sacchi
, Phys. Rev. A
(to be published), quant-ph/0403083.14.
G.M.
D’Ariano
, “Quantum estimation theory and optical detection
,” in Quantum Optics and the Spectroscopy of Solids, edited by T.
Hakioğlu
and A. S.
Shumovsky
(Kluwer, Dordrecht, 1997
), pp. 139
–174
.
This content is only available via PDF.
© 2004 American Institute of Physics.
2004
American Institute of Physics
You do not currently have access to this content.