Modules over a quasialgebra (here, by quasialgebra we mean a left H-module algebra, where H is a quasi-Hopf algebra), as defined by Albuquerque and Majid, coincide with modules over a certain associative algebra, a quasi-Hopf smash product. As a consequence of this, we get that the category of modules over the octonions is isomorphic to the category of modules over the algebra of 8×8 real matrices. We provide a new approach to the endomorphism quasialgebra associated to a left H-module, which in the finite dimensional case yields the same results as the one of Albuquerque and Majid. We discuss possible definitions as endomorphism quasialgebras for Heisenberg doubles of a finite dimensional quasi-Hopf algebra.

1.
Albuquerque
,
H.
and
Majid
,
S.
, “
Quasialgebra structure of the octonions
,”
J. Algebra
220
,
188
224
(
1999
).
2.
Baez
,
J. C.
, “
The octonions
,”
Bull., New Ser., Am. Math. Soc.
39
,
145
205
(
2002
).
3.
Bulacu
,
D.
and
Caenepeel
,
S.
, “
Two-sided two-cosided Hopf modules and Doi-Hopf modules for quasi-Hopf algebras
,”
J. Algebra
270
,
55
95
(
2003
).
4.
Bulacu
,
D.
,
Caenepeel
,
S.
, and
Panaite
,
F.
, “
Yetter-Drinfeld categories for quasi-Hopf algebras
,” math.QA/0311379.
5.
Bulacu
,
D.
and
Nauwelaerts
,
E.
, “
Relative Hopf modules for (dual) quasi-Hopf algebras
,”
J. Algebra
229
,
632
659
(
2000
).
6.
Bulacu
,
D.
,
Panaite
,
F.
, and
Van Oystaeyen
,
F.
, “
Quasi-Hopf algebra actions and smash products
,”
Commun. Algebra
28
,
631
651
(
2000
).
7.
Bulacu
,
D.
,
Panaite
,
F.
, and
Van Oystaeyen
,
F.
, “
Quantum traces and quantum dimensions for quasi-Hopf algebras
,”
Commun. Algebra
27
,
6103
6122
(
1999
).
8.
Caenepeel
,
S.
,
Van Oystaeyen
,
F.
, and
Zhang
,
Y.
, “
Quantum Yang–Baxter module algebras
,”
K-Theory
8
,
231
255
(
1994
).
9.
Drinfeld
,
V. G.
,
Quasi-Hopf algebras
,
Leningrad Math. J.
1
,
1419
1457
(
1990
).
10.
Hausser
,
F.
and
Nill
,
F.
, “
Diagonal crossed products by duals of quasi-quantum groups
,”
Rev. Math. Phys.
11
,
553
629
(
1999
).
11.
Hausser
,
F.
and
Nill
,
F.
, “
Doubles of quasi-quantum groups
,”
Commun. Math. Phys.
199
,
547
589
(
1999
).
12.
Kassel
,
C.
, “
Quantum groups
,” Graduate Texts in Mathematics (Springer-Verlag, Berlin,
1995
), Vol.
155
.
13.
Lu
,
J.-H.
, “
On the Drinfeld double and the Heisenberg double of a Hopf algebra
,”
Duke Math. J.
74
,
763
776
(
1994
).
14.
Majid
,
S.
, Foundations of Quantum Group Theory (Cambridge University Press, Cambridge,
1995
).
15.
Majid
,
S.
, “
Quantum double for quasi-Hopf algebras
,”
Lett. Math. Phys.
45
,
1
9
(
1998
).
16.
Montgomery
,
S.
, “
Hopf algebras and their actions on rings
,” CBMS Regional Conference Series, Vol.
82
(American Mathematical Society, Providence, RI,
1993
).
17.
Panaite
,
F.
, “
Doubles of (quasi) Hopf algebras and some examples of quantum groupoids and vertex groups related to them
,” math.QA/0101039.
18.
Schafer
,
R.D.
, An Introduction to Nonassociative Algebras (Academic, New York,
1966
).
19.
Sweedler
,
M.E.
, Hopf Algebras (Benjamin, New York,
1969
).
20.
Van Oystaeyen
,
F.
and
Zhang
,
Y.
, “
The Brauer group of a braided monoidal category
,”
J. Algebra
202
,
96
128
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.