Modules over a quasialgebra (here, by quasialgebra we mean a left -module algebra, where is a quasi-Hopf algebra), as defined by Albuquerque and Majid, coincide with modules over a certain associative algebra, a quasi-Hopf smash product. As a consequence of this, we get that the category of modules over the octonions is isomorphic to the category of modules over the algebra of real matrices. We provide a new approach to the endomorphism quasialgebra associated to a left -module, which in the finite dimensional case yields the same results as the one of Albuquerque and Majid. We discuss possible definitions as endomorphism quasialgebras for Heisenberg doubles of a finite dimensional quasi-Hopf algebra.
REFERENCES
1.
Albuquerque
, H.
and Majid
, S.
, “Quasialgebra structure of the octonions
,” J. Algebra
220
, 188
–224
(1999
).2.
Baez
, J. C.
, “The octonions
,” Bull., New Ser., Am. Math. Soc.
39
, 145
–205
(2002
).3.
Bulacu
, D.
and Caenepeel
, S.
, “Two-sided two-cosided Hopf modules and Doi-Hopf modules for quasi-Hopf algebras
,” J. Algebra
270
, 55
–95
(2003
).4.
Bulacu
, D.
, Caenepeel
, S.
, and Panaite
, F.
, “Yetter-Drinfeld categories for quasi-Hopf algebras
,” math.QA/0311379.5.
Bulacu
, D.
and Nauwelaerts
, E.
, “Relative Hopf modules for (dual) quasi-Hopf algebras
,” J. Algebra
229
, 632
–659
(2000
).6.
Bulacu
, D.
, Panaite
, F.
, and Van Oystaeyen
, F.
, “Quasi-Hopf algebra actions and smash products
,” Commun. Algebra
28
, 631
–651
(2000
).7.
Bulacu
, D.
, Panaite
, F.
, and Van Oystaeyen
, F.
, “Quantum traces and quantum dimensions for quasi-Hopf algebras
,” Commun. Algebra
27
, 6103
–6122
(1999
).8.
Caenepeel
, S.
, Van Oystaeyen
, F.
, and Zhang
, Y.
, “Quantum Yang–Baxter module algebras
,” K-Theory
8
, 231
–255
(1994
).9.
10.
Hausser
, F.
and Nill
, F.
, “Diagonal crossed products by duals of quasi-quantum groups
,” Rev. Math. Phys.
11
, 553
–629
(1999
).11.
Hausser
, F.
and Nill
, F.
, “Doubles of quasi-quantum groups
,” Commun. Math. Phys.
199
, 547
–589
(1999
).12.
Kassel
, C.
, “Quantum groups
,” Graduate Texts in Mathematics (Springer-Verlag, Berlin, 1995
), Vol. 155
.13.
Lu
, J.-H.
, “On the Drinfeld double and the Heisenberg double of a Hopf algebra
,” Duke Math. J.
74
, 763
–776
(1994
).14.
Majid
, S.
, Foundations of Quantum Group Theory (Cambridge University Press, Cambridge, 1995
).15.
Majid
, S.
, “Quantum double for quasi-Hopf algebras
,” Lett. Math. Phys.
45
, 1
–9
(1998
).16.
Montgomery
, S.
, “Hopf algebras and their actions on rings
,” CBMS Regional Conference Series, Vol. 82
(American Mathematical Society, Providence, RI, 1993
).17.
Panaite
, F.
, “Doubles of (quasi) Hopf algebras and some examples of quantum groupoids and vertex groups related to them
,” math.QA/0101039.18.
Schafer
, R.D.
, An Introduction to Nonassociative Algebras (Academic, New York, 1966
).19.
Sweedler
, M.E.
, Hopf Algebras (Benjamin, New York, 1969
).20.
Van Oystaeyen
, F.
and Zhang
, Y.
, “The Brauer group of a braided monoidal category
,” J. Algebra
202
, 96
–128
(1998
).
This content is only available via PDF.
© 2004 American Institute of Physics.
2004
American Institute of Physics
You do not currently have access to this content.