Deformation quantization, which gives a development of quantum mechanics independent of the operator algebra formulation, and quantum groups, which arose from the inverse scattering method and a study of Yang–Baxter equations, share a common idea abstracted earlier in algebraic deformation theory: that algebraic objects have infinitesimal deformations which may point in the direction of certain continuous global deformations, i.e., “quantizations.” In deformation quantization the algebraic object is the algebra of “observables” (functions) on symplectic phase space, whose infinitesimal deformation is the Poisson bracket and global deformation a “star product,” in quantum groups it is a Hopf algebra, generally either of functions on a Lie group or (often its dual in the topological vector space sense, as we briefly explain) a completed universal enveloping algebra of a Lie algebra with, for infinitesimal, a matrix satisfying the modified classical Yang–Baxter equation (MCYBE). Frequently existence proofs are known but explicit formulas useful for physical applications have been difficult to extract. One success here comes from “universal deformation formulas” (UDFs), expressions built from a Lie algebra which deform any algebra on which the Lie algebra operates as derivations. The most famous of these is the Moyal product, a special case of a class in which the Lie algebra is Abelian. Another comes from recognition that the Belavin–Drinfel’d solutions to the MCYBE are, in fact, infinitesimal deformations for which, in the case of the special linear groups, it is possible to give explicit formulas for the corresponding quantum Yang–Baxter equations. This review paper discusses, necessarily in brief, these and related topics, including “twisting” as a form of UDF and finding formulas for “preferred deformations” of Hopf algebras in which the multiplication or comultiplication is rigid and must be preserved in the course of deformation.

1.
Abe
,
E.
, Hopf Algebras,
Cambridge Tracts in Mathematics
(Cambridge University Press, Cambridge,
1980
), Vol.
74
.
2.
Alekseev
,
A.
and
Lachowska
,
A.
, “
Invariant *-products on coadjoint orbits and the Shapovalov pairing
,” math.QA/0308100.
3.
Arnal
,
D.
,
Cahen
,
M.
, and
Gutt
,
S.
, “
Representations of compact Lie groups and quantization by deformation
,”
Bull. Acad. R. Med. Belg.
74
,
123
141
(
1988
);
Arnal
,
D.
,
Cahen
,
M.
, and
Gutt
,
S.
, “
Exponential and holomorphic discrete series
,”
Bull. Soc. Math. Belg.
41
,
207
227
(
1989
).
4.
Arnal
,
D.
and
Cortet
,
J-C.
Geometrical theory of contractions and representations
,”
J. Math. Phys.
20
,
556
563
(
1979
).
5.
Arnal
,
D.
and
Cortet
,
J-C.
, “
Nilpotent Fourier transform and applications
,”
Lett. Math. Phys.
9
,
25
34
(
1985
).
6.
Arnal
,
D.
and
Cortet
,
J-C.
, “
Star-products in the method of orbits for nilpotent Lie groups
,”
J. Geom. Phys.
2
,
83
116
(
1985
).
7.
Arnal
,
D.
and
Corlet
,
J.-C.
, “
Représentations star des groupes exponentiels
,”
J. Funct. Anal.
92
,
103
135
(
1990
).
8.
Arnal
,
D.
,
Cortet
,
J-C.
, and
Ludwig
,
J.
, “
Moyal product and representations of solvable Lie groups
,”
J. Funct. Anal.
133
,
402
424
(
1995
).
9.
Arnal
,
D.
,
Cortet
,
J-C.
, and
Molin
,
P.
, “
Star-produit et représentation de masse nulle du groupe de Poincaré
,”
C. R. Acad. Sci. Paris, Ser. A-B
291
,
A327
A330
(
1980
).
10.
Basart
,
H.
,
Flato
,
M.
,
Lichnerowicz
,
A.
, and
Sternheimer
,
D.
, “
Deformation theory applied to quantization and statistical mechanics
,”
Lett. Math. Phys.
8
,
483
494
(
1984
).
11.
Bayen
,
F.
,
Flato
,
M.
,
Fronsdal
,
C.
,
Lichnerowicz
,
A.
, and
Sternheimer
,
D.
, “
Deformation theory and quantization I. Deformations of symplectic structures
,”
Ann. Phys. (N.Y.)
111
,
61
110
(
1978
);
Bayen
,
F.
,
Flato
,
M.
,
Fronsdal
,
C.
,
Lichnerowicz
,
A.
, and
Sternheimer
,
D.
, “
Deformation theory and quantization II. Physical applications
,”
Ann. Phys. (N.Y.)
111
,
111
151
(
1978
).
12.
Belavin
,
A.
and
Drinfel'd
,
V.
, “
Solutions of the classical Yang–Baxter equation for simple Lie algebras
,”
Funkc. Anal. Priloz.
16
(3),
1
29
(
1982
).
13.
Belavin
,
A.
and
Drinfel’d
,
V.
, “
Triangle equations and simple Lie algebras
,” Mathematical Physics Reviews (Harwood Academic, Chur,
1984
), Vol.
4
, pp.
93
165
.
14.
Bers
,
L.
, Selected works of Lipman Bers. Part 1. Papers on complex analysis, edited by
Irwin
Kra
and
Bernard
Maskit
(American Mathematical Society, Providence, RI,
1998
);
Quasiconformal Mappings and Teichmüller’s Theorem, Analytic Functions (Princeton University Press, Princeton, NJ,
1960
), pp.
89
119
.
15.
Bertrand
,
J.
and
Bertrand
,
P.
, “
Symbolic calculus on the time-frequency half-plane
,”
J. Math. Phys.
39
,
4071
4090
(
1998
).
16.
Bidegain
,
F.
, “
A candidate for a noncompact quantum group
,”
Lett. Math. Phys.
36
,
157
167
(
1996
).
17.
Bidegain
,
F.
and
Pinczon
,
G.
, “
A star-product approach to noncompact quantum groups
,”
Lett. Math. Phys.
33
,
231
240
(
1995
);
Bidegain
,
F.
and
Pinczon
,
G.
, hep-th/9409054.
18.
Bidegain
,
F.
and
Pinczon
,
G.
, “
Quantization of Poisson-Lie groups and applications
,”
Commun. Math. Phys.
179
,
295
332
(
1996
).
19.
Bieliavsky
,
P.
, “
Espaces symétriques symplectique
,” Ph.D thesis, Université Libre de Bruxelles,
1995
.
20.
Bieliavsky
,
P.
, “
Four-dimensional simply connected symplectic symmetric spaces
,”
Geom. Dedic.
69
,
291
316
(
1998
).
21.
Bieliavsky
,
P.
, “
Strict quantization of solvable symmetric spaces
,”
J. Sympl. Geom.
1
(2),
269
320
(
2002
).
22.
Bieliavsky
,
P.
,
Bonneau
,
P.
, and
Maeda
,
Y.
, “
Universal deformation formulae, symplectic Lie groups and symmetric spaces
,” math.QA/0308189.
23.
Bieliavsky
,
P.
,
Bonneau
,
P.
, and
Maeda
,
Y.
, “
Universal deformation formulae for three-dimensional solvable Lie groups
,” math.QA/0308188.
24.
Bieliavsky
,
P.
and
Maeda
,
Y.
, “
Convergent star product algebras on ‘ ax+b,’ ”
J. Math. Phys.
62
,
233
243
(
2002
).
25.
Blohmann
,
C.
, “
Covariant realization of quantum spaces as star products by Drinfel'd twists
,”
Lett. Math. Phys.
44
,
4736
4755
(
2003
).
26.
Bonneau
,
P.
, “
Cohomology and associated deformations for not necessarily coassociative bialgebras
,”
Lett. Math. Phys.
26
,
277
283
(
1992
).
27.
Bonneau
,
P.
, “
Topological quantum double
,”
Rev. Math. Phys.
6
,
305
318
(
1994
).
28.
Bonneau
,
P.
,
Flato
,
M.
,
Gerstenhaber
,
M.
, and
Pinczon
,
G.
, “
The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations
,”
Commun. Math. Phys.
161
,
125
156
(
1994
).
29.
Bonneau
,
P.
,
Flato
,
M.
, and
Pinczon
,
G.
, “
A natural and rigid model of quantum groups
,”
Lett. Math. Phys.
25
,
75
84
(
1992
).
30.
de Broglie
,
L.
, “
Ondes et quanta
,”
C. R. Hebd. Seances Acad. Sci.
177
,
517
519
(
1923
);
Recherchessurlathéoriedesquanta,thèse,Paris,
1924
. La mécanique ondulatoire, Gauthier-Villars, Paris,
1928
.
31.
Cahen
,
M.
,
Gutt
,
S.
, and
Rawnsley
,
J.
, “
Quantization of Kähler manifolds IV
,”
Lett. Math. Phys.
34
,
159
168
(
1995
).
32.
Caldararu
,
A.
,
Giaquinto
,
A.
, and
Witherspoon
,
S.
, “
Algebraic deformations arising from orbifolds with discrete torsion
J. Pure Appl. Algebra
187
,
51
70
(
2004
).
33.
Coll
,
V.
,
Gerstenhaber
,
M.
, and
Giaquinto
,
A.
,“
An explicit deformation formula with noncommuting derivations
,” Ring theory 1989, Israel Math. Conf. Proc., Weizmann, Jerusalem,
1989
, Vol.
1
, pp.
396
403
.
34.
Connes
,
A.
and
Dubois-Violette
,
M.
, “
Moduli space and structure of noncommutative 3-spheres
,”
Lett. Math. Phys.
66
,
99
121
(
2003
);
35.
Connes
,
A.
and
Landi
,
G
, “
Noncommutative manifolds, the instanton algebra and isospectral deformations
,”
Commun. Math. Phys.
221
,
141
159
(
2001
).
36.
Connes
,
A.
and
Kreimer
,
D.
, “
Lessons from quantum field theory—Hopf algebras and spacetime geometries
,”
Lett. Math. Phys.
48
,
85
96
(
1999
).
37.
Connes
,
A.
and
Marcoli
,
M.
, “
From physics to number theory via noncommutative geometry. Part I. Quantum statistical mechanics of Q-lattices
,” math.NT/0404128.
38.
Connes
,
A.
and
Moscovici
,
A.
, “
Modular Hecke algebras and their Hopf symmetry
,”
Mosc. Math. J.
4
,
67
109
(
2004
);
Connes
,
A.
and
Moscovici
,
A.
, math.QA/0301089;
Connes
,
A.
and
Moscovici
,
A.
, “
Rankin–Cohen Brackets and the Hopf Algebra of Transverse Geometry
,”
Mosc. Math. J.
4
,
111
130
(
2004
);
Connes
,
A.
, and
Moscovici
,
A.
, math.QA/0304316.
39.
Cremmer
,
E.
and
Gervais
,
J-L.
, “
The quantum group structure associated with nonlinearly extended Virasoro algebras
,”
Commun. Math. Phys.
134
,
619
632
(
1990
).
40.
Dito
,
G.
,
Flato
,
M.
,
Sternheimer
,
D.
, and
Takhtajan
,
L.
, “
Deformation quantization and nambu mechanics
,”
Commun. Math. Phys.
183
,
1
22
(
1997
);
41.
Dito
,
G.
and
Sternheimer
,
D.
, “
Deformation uantization: Genesis, developments and metamorphoses
,” in Deformation Quantization, IRMA Lectures in Math. Theoret. Phys., edited by
G.
Halbout
(de Gruyter, Berlin,
2002
), Vol.
1
, pp.
9
54
;
42.
Donin
,
J.
and
Mudrov
,
A.
,
Quantum coadjoint orbits of GL(n) and generalized Verme modules
,” math.QA/0212318.
43.
Douglas
,
M.
and
Nekrasov
,
N.
, “
Noncommutative field theory
,”
Rev. Mod. Phys.
73
,
977
(
2001
);
Douglas
,
M.
and
Nekrasov
,
N.
, hep-th/0106048.
44.
Drabant
,
B.
,
Van Daele
,
A.
, and
Zhang
,
Y.
, “
Actions of multiplier Hopf algebras
,”
Commun. Algebra
27
(9),
4117
4172
(
1999
).
45.
Drinfel’d
,
V.
, “
Hopf algebras and the quantum Yang–Baxter equation
,”
Dokl. Akad. Nauk SSSR
283
,
1060
1064
(
1985
).
46.
Drinfel’d
,
V.
, “
Quantum groups
,” in Proceedings of the International Congress of Mathematicians (Berkeley, CA,
1986
) (American Mathematical Society, Providence, RI,
1987
), Vols.
1–2
, pp.
798
820
.
47.
Drinfel’d
,
V.
, “
Almost cocommutative Hopf algebras
,”
Algebra Anal.
1
(2),
30
46
(
1989
).
48.
Drinfeld
,
V.
, “
Quasi-Hopf algebras
,”
Algebra Anal.
1
(6),
114
148
(
1989
).
49.
Drinfel'd
,
V.
, “
On Poisson homogeneous spaces of Poisson–Lie groups
,”
Teor. Mat. Fiz.
95
,
226
227
(
1993
)
Drinfel'd
,
V.
, [
Theor. Math. Phys.
95
,
524
525
(
1993
)].
50.
Elashvili
,
A.
, “
Frobenius Lie algebras
,”
Funkc. Anal. Priloz.
16
(4),
94
95
(
1982
).
51.
Endelman
,
R.
and
Hodges
,
T.
, “
Generalized Jordanian R-matrices of Cremmer–Gervais type
,”
Lett. Math. Phys.
52
,
225
237
(
2000
).
52.
Enriquez
,
B.
, “
A cohomological construction of quantization functors of Lie bialgebras
,” math.QA/0212325;
On quantization functors of Lie bialgebras
,” The 2000 Twente Conference on Lie Groups (Enschede),
Acta Appl. Math.
73 (1-2),
133
140
(
2002
).
53.
Enriquez
,
B.
,
Etingov
,
P.
, and
Marshall
,
I.
,
Quantization of some Poisson–Lie r-matrices and Poisson homogeneous spaces
,” math.QA/0403283.
54.
Etingof
,
P.
and
Kazhdan
,
D.
, “
Quantization of Lie bialgebras I
,”
Selecta Math., New Ser.
2
,
1
41
(
1996
);
Etingof
,
P.
, and
Kazhdan
,
D.
, “
Quantization of Lie bialgebras II
,”
Selecta Math., New Ser.
4
,
213
231
(
1998
);
Etingof
,
P.
, and
Kazhdan
,
D.
, “
Quantization of Lie bialgebras III
,”
Selecta Math., New Ser.
4
,
233
269
(
1998
);
Etingof
,
P.
, and
Kazhdan
,
D.
, “
Quantization of Lie bialgebras IV
,”
Selecta Math., New Ser.
6
,
79
104
(
2000
);
Etingof
,
P.
, and
Kazhdan
,
D.
, “
Quantization of Lie bialgebras V
,”
Selecta Math., New Ser.
6
,
105
130
(
2000
);
Quantization of Poisson algebraic groups and Poisson homogeneous spaces
,” in Symètries Quantiques (Les Houches, 1995) (North–Holland, Amsterdam, 1998), pp.
935
946
.
55.
Etingof
,
P.
,
Schedler
,
T.
, and
Schiffmann
,
O.
, “
Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras
,”
J. Am. Math. Soc.
13
,
595
609
(
2000
).
56.
Faddeev
,
L.D.
,
Reshetikhin
,
N.Yu.
, and
Takhtajan
,
L.A.
, “
Quantization of Lie groups and Lie algebras
,” in Algebraic Analysis (Academic, Boston,
1988
), Vol.
I
, pp.
129
139
.
57.
Fedosov
,
B. V.
, “
A simple geometrical construction of deformation quantization
,”
J. Diff. Geom.
40
,
213
238
(
1994
);
Deformation Quantization and Index Theory, Mathematical Topics (Akademie Verlag, Berlin,
1996
), Vol.
9
.
58.
Flato
,
M.
, “
Deformation view of physical theories
,”
Czech. J. Phys., Sect. B
32
,
472
475
(
1982
).
59.
Flato
,
M.
,
Lichnerowicz
,
A.
, and
Sternheimer
,
D.
, “
Deformations of Poisson brackets, Dirac brackets and applications
,”
J. Math. Phys.
17
,
1754
1762
(
1976
);
Flato
,
M.
,
Lichnerowicz
,
A.
, and
Sternheimer
,
D.
, “
Crochets de Moyal-Vey et quantification
,”
C. R. Acad. Sci. Paris, Ser. A-B
283
,
A19
A24
(
1976
).
60.
Frölicher
,
A.
and
Nijenuis
,
A.
, “
A theorem on stability of complex structures
,”
Proc. Natl. Acad. Sci. U.S.A.
43
,
239
241
(
1957
).
61.
Fro/nsdal
,
C.
, “
Some ideas on quantization
,”
Rep. Math. Phys.
15
,
111
145
(
1979
).
62.
Fro/nsdal
,
C.
, “
Generalization and exact deformations of quantum groups
,”
Publ. Res. Inst. Math. Sci.
33
,
91
149
(
1997
).
63.
Fro/nsdal
,
C.
, “
Harrison cohomology and abelian deformation quantization on algebraic varieties
,” in Deformation Quantization, edited by
G.
Halbout
, IRMA Lect. Math. Theor. Phys. (de Gruyter, Berlin,
2002
), Vol.
1
, pp.
149
161
;
64.
Fro/nsdal
,
C.
and
Sternheimer
,
D.
, “
Explicit relations for deformation quantization in a Lie algebra context
” (unpublished).
65.
Gerstenhaber
,
M.
, “
The cohomology structure of an associative ring
,”
Ann. Math.
78
,
267
288
(
1963
).
66.
Gerstenhaber
,
M.
, “
On the deformation of rings and algebras
,”
Ann. Math.
79
,
59
103
(
1964
).
67.
Gerstenhaber
,
M.
, “
On the deformations of rings and algebras, III
,”
Ann. Math.
88
,
1
34
(
1968
).
68.
Gerstenhaber
,
M.
and
Giaquinto
,
A.
, “
Boundary solutions of the classical Yang–Baxter equation
,”
Lett. Math. Phys.
40
,
337
353
(
1997
).
69.
Gerstenhaber
,
M.
and
Giaquinto
,
A.
, “
Boundary solutions of the quantum Yang–Baxter equation and solutions in three dimensions
,”
Lett. Math. Phys.
44
,
131
141
(
1998
).
70.
Gerstenhaber
,
M.
and
Giaquinto
,
A.
, “
Compatible deformations
,” in Trends in the Representation Theory of Finite Dimensional Algebras, Contemporary Mathematics, edited by
E. L.
Green
and
B.
Huisgen-Zimmermann
(American Mathematical Society, Providence, RI,
1998
), Vol.
229
, pp.
159
168
.
71.
Gerstenhaber
,
M.
,
Giaquinto
,
A.
, and
Schack
,
S.D.
, “
Quantum symmetry
,” in Lecture Notes in Mathematics (Springer, Berlin,
1990
), Vol.
1510
, pp.
9
46
.
72.
Gerstenhaber
,
M.
,
Giaquinto
,
A.
, and
Schack
,
S.D.
, “
Construction of quantum groups from Belavin–Drinfel’d infinitesimals
,” Quantum Deformations of Algebras and Their Representations, Isr. Math. Conf. Proc. (Bar-Ilan Univ., Ramat Gan,
1993
), Vol.
7
, pp.
45
64
.
73.
Gerstenhaber
,
M.
,
Giaquinto
,
A.
, and
Schaps
,
M.
,“
The Donald–Flanigan problem for finite reflection groups
,”
Lett. Math. Phys.
56
,
41
72
(
2001
).
74.
Gerstenhaber
,
M.
and
Schack
,
S.D.
, “
Algebraic cohomology and deformation theory
,” in Deformation Theory of Algebras and Structures and Applications, NATO ASI Ser. C, edited by
M.
Hazewinkel
and
M.
Gerstenhaber
(Kluwer Academic, Dordrecht,
1988
), Vol.
247
, pp.
11
264
.
75.
Gerstenhaber
,
M.
and
Schack
,
S. D.
, “
Bialgebra cohomology, deformations, and quantum groups
,”
Proc. Natl. Acad. Sci. U.S.A.
87
,
478
481
(
1990
).
76.
Gerstenhaber
,
M.
and
Schack
,
S.D.
, “
Algebras, bialgebras, quantum groups, and algebraic deformations
,” in Deformation Theory and Quantum Groups with Applications to Mathematical Physics, edited by
J.
Stasheff
and
M.
Gerstenhaber
(American Mathematical Society, Providence, RI,
1992
), Vol.
134
, pp.
51
92
.
77.
Giaquinto
,
A.
, “
Quantization of tensor representations and deformation of matrix bialgebras
,”
J. Pure Appl. Algebra
79
,
169
190
(
1992
).
78.
Giaquinto
,
A.
and
Hodges
,
T.
, “
Nonstandard solutions of the Yang–Baxter equation
,”
Lett. Math. Phys.
44
,
67
75
(
1998
).
79.
Giaquinto
,
A.
and
Zhang
,
J. J.
, “
Quantum Weyl algebras
,”
J. Algebra
176
(3),
861
881
(
1995
).
80.
Giaquinto
,
A.
and
Zhang
,
J. J.
, “
Bialgebra actions, twists, and universal deformation formulas
,”
J. Pure Appl. Algebra
128
,
133
151
(
1998
).
81.
Groenewold
,
H.
, “
On the principles of elementary quantum mechanics
,”
Physica (Amsterdam)
12
,
405
460
(
1946
).
82.
Grothendieck
,
A.
, “
Produits tensoriels topologiques et espaces nucléaires
,”
Mem. Am. Math. Soc.
16
.
1
140
(
1955
).
83.
Gutt
,
S.
, “
An explicit *-product on the cotangent bundle of a Lie group
,”
Lett. Math. Phys.
7
,
249
258
(
1983
).
84.
Hinich
,
V.
, “
Tamarkin’s proof of Kontsevich formality theorem
,”
Forum. Math.
15
(4),
591
614
(
2003
).
85.
Hochschild
,
G.
,
Kostant
,
B.
, and
Rosenberg
,
A.
, “
Differential forms on regular affine algebras
,”
Trans. Am. Math. Soc.
102
,
383
406
(
1962
).
86.
Inönü
,
E.
and
Wigner
,
E. P.
, “
On the contraction of groups and their representations
,”
Proc. Natl. Acad. Sci. U.S.A.
39
,
510
524
(
1953
).
87.
Jimbo
,
M.
, “
A q-difference algebra of U(g) and the Yang–Baxter equation
,”
Lett. Math. Phys.
10
,
63
69
(
1985
).
88.
Karabegov
,
A. V.
, “
Cohomological classification of deformation quantizations with separation of variables
,”
Lett. Math. Phys.
43
,
347
357
(
1998
);
Karabegov
,
A. V.
, “
Berezin’s quantization on flag manifolds and spherical modules
,”
Trans. Am. Math. Soc.
350
,
1467
1479
(
1998
).
89.
Karasev
,
M.
, “
Formulas for noncommutative products of functions in terms of membranes and strings I
,”
Russ. J. Math. Phys.
2
(4),
445
462
(
1994
).
90.
Karolinsky
,
E.
,
Muzykin
,
K.
,
Stolin
,
A.
, and
Tarasov
,
V.
, “
Dynamical Yang–Baxter equations, quasi-Poisson homogeneous spaces, and quantization
,” math.QA/0309203.
91.
Kodaira
,
K.
and
Spencer
,
D.C.
, “
On the variation of almost-complex structure
,” Algebraic Geometry and Topology. A Symposium in Honor of S. Lefschetz (Princeton University Press, Princeton, NJ,
1957
), pp.
139
150
;
Kodaira
,
K.
and
Spencer
,
D.C.
, “
On deformations of complex analytic structures I, II
,”
Ann. Math.
67
,
328
466
(
1958
);
Kodaira
,
K.
and
Spencer
,
D. C.
III Stability theorems for complex structures
,”
Ann. Math.
71
,
43
76
(
1960
).
92.
Kontsevich
,
M.
, “
Deformation quantization of Poisson manifolds
,”
Lett. Math. Phys.
66
,
157
216
(
2003
);
Kontsevich
,
M.
, q-alg/9709040.
93.
Kontsevich
,
M.
and
Rosenberg
,
A.L.
, “
Noncommutative smooth spaces
,” The Gelfand Mathematical Seminars, 1996-1999,
85
108
, Gelfand Math. Sem., Birkhäuser Boston
2000
, math.AG/9812158.
94.
Kontsevich
,
M.
, “
Operads and motives in deformation quantization
,”
Lett. Math. Phys.
48
,
35
72
(
1999
);
Kontsevich
,
M.
, math.QA/9904055.
95.
Kontsevich
,
M.
and
Soibelman
,
Y.
, “
Deformations of algebras over operads and the Deligne conjecture
,” in Conférence Moshé Flato 1999, Math. Phys. Stud., edited by
G.
Dito
and
D.
Sternheimer
(Kluwer Academic, Dordrecht,
2000
), Vol.
21
, pp.
255
307
;
Kontsevich
,
M.
and
Soibelman
,
Y.
, math.QA/0001151.
96.
Kontsevich
,
M.
, “
Deformation quantization of algebraic varieties
,”
Lett. Math. Phys.
56
,
271
294
(
2001
);
Kontsevich
,
M.
, math.AG/0106006.
97.
Kontsevich
,
M.
and
Zagier
,
D.
, “
Periods
,” in Mathematics Unlimited—2001 and Beyond (Springer, Berlin,
2001
), pp.
771
808
.
98.
Kulish
,
P. P.
,
Lyakhovsky
,
V. D.
, and
Mudrov
,
A. I.
, “
Extended Jordanian twists for Lie algebras
,”
J. Math. Phys.
40
,
4569
4586
(
1999
).
99.
Kulish
,
P. P.
and
Reshetikhin
,
N. Yu.
, “
Quantum linear problem for the sine-Gordon equation and higher representations
,”
Zap. Nauchn. Semin. LOMI
101
,
101
110
(
1981
)
Kulish
,
P. P.
and
Reshetikhin
,
N. Yu.
, [
J. Sov. Math.
23
,
24
35
(
1983
)].
100.
Lesimple
,
M.
and
Pinczon
,
G.
, “
Deformations of representations of Lie groups and Lie algebras
,”
J. Math. Phys.
34
,
4251
4272
(
1993
).
101.
Lévy-Nahas
,
M.
, “
Deformations and contractions of Lie algebras
,”
J. Math. Phys.
8
,
1211
1222
(
1967
).
102.
Lichnerowicz
,
A.
, “
Variété symplectique et dynamique associée à une sousvariété
,”
C. R. Acad. Sci. Paris, Ser. A-B
280
,
A523
A527
(
1975
).
103.
Lyakhovsky
,
V. D.
and
Samsonov
,
M. E.
, “
Elementary parabolic twist
,”
J. Algebra Appl.
1
,
413
424
(
2002
).
104.
Maillard
,
J. M.
, “
On the twisted convolution product and the Weyl transform of tempered distributions
,”
J. Geom. Phys.
3
,
231
261
(
1986
).
105.
Maillard
,
J. M.
, “
Star exponentials for any ordering of the elements of the inhomogeneous symplectic Lie algebra
,”
J. Math. Phys.
45
,
785
793
(
2004
).
106.
Majid
,
S.
, “
Physics for algebraists: Noncommutative and noncocommutative Hopf algebras by a bicrossproduct construction
,”
J. Algebra
130
(1),
17
64
(
1990
).
107.
Majid
,
S.
, “
Tannaka–Krein theorem for quasi-Hopf algebras and other results
,”
Contemp. Math.
134
,
219
232
(
1992
).
108.
Majid
,
S.
, “
Braided matrix structure of the Sklyanin algebra and of the quantum Lorentz group
,”
Commun. Math. Phys.
156
,
607
638
(
1993
).
109.
Majid
,
S.
, A Quantum Groups Primer, London Mathematical Society Lecture Note Series 292 (Cambridge University Press, Cambridge,
2002
), x+169 pp.
110.
Martin
,
C.
and
Zouagui
,
M.
, “
A noncommutative Hopf structure C [SL (2, C)] as a quantum Lorentz group
,”
J. Math. Phys.
37
,
3611
3629
(
1996
).
111.
Molnar
,
R.
, “
Semidirect products of Hopf algebras
,”
J. Algebra
47
(1),
29
51
(
1977
).
112.
Moreno
,
C.
, “
Invariant star products and representations of compact semisimple Lie groups
,”
Lett. Math. Phys.
12
,
217
229
(
1986
).
113.
Moyal
,
J. E.
, “
Quantum mechanics as a statistical theory
,”
Proc. Cambridge Philos. Soc.
45
,
99
124
(
1949
).
114.
Nadaud
,
F.
, “
Generalized deformations, Koszul resolutions, Moyal products
,”
Rev. Math. Phys.
10
,
685
704
(
1998
);
Nadaud
,
F.
, “Generalizeddeformationsandhochschildcohomology,”
Lett. Math. Phys.
58
,
41
55
(
2001
).
115.
Nambu
,
Y.
, “
Generalized Hamilton dynamics
,”
Phys. Rev. D
7
,
2405
2412
(
1973
).
116.
Ogievetsky
,
O.
,
Schmidke
,
W.
,
Wess
,
J.
, and
Zumino
,
B.
, “
Six generator q-deformed Lorentz algebra
,”
Lett. Math. Phys.
23
,
233
240
(
1991
).
117.
Pedersen
,
G.
, C*-Algebras and Their Automorphism Groups, London Mathematical Society Monographs (Academic, London,
1979
), Vol.
14
.
118.
Pinczon
,
G.
, “
Noncommutative deformation theory
,”
Lett. Math. Phys.
41
,
101
117
(
1997
).
119.
Pflaum
,
M.
, “
Deformation quantization on cotangent bundles
,”
Rep. Math. Phys.
43
,
291
297
(
1999
).
120.
Podleś
,
P.
and
Woronowicz
,
S. L.
, “
Quantum deformation of Lorentz group
,”
Commun. Math. Phys.
130
,
381
431
(
1990
).
121.
Reshetikhin
,
N. Y.
, “
Multiparameter quantum groups and twisted quasitriangular Hopf algebras
,”
Lett. Math. Phys.
20
,
331
335
(
1990
).
122.
Reshetikhin
,
N. Y.
and
Semenov-Tian-Shansky
,
M.
, “
Quantum-matrices and factorization problems
,”
J. Geom. Phys.
5
,
533
550
(
1989
).
123.
Rieffel
,
M.
, “
Deformation quantization of Heisenberg manifolds
,”
Commun. Math. Phys.
122
,
531
562
(
1989
).
124.
Rieffel
,
M.
, “
Deformation quantization for actions of Rd
,”
Mem. Am. Math. Soc.
106
,
No
.
506
(
1993
).
125.
Saletan
,
E. J.
, “
Contraction of Lie groups
,”
J. Math. Phys.
2
,
1
21
(
1961
);
Saletan
,
E. J.
,
J. Math. Phys.
2
,
742
(
1961
).
126.
Schedler
,
T.
, “
Verification of the GGS conjecture for n≤12
,” math.QA/9901079.
127.
Schedler
,
T.
, “
Proof of the GGS conjecture
,”
Math. Res. Lett.
7
(5-6),
801
826
(
2000
).
128.
Schmid
,
W.
, “
Character formulas and localization of integrals
,” in Deformation Theory and Symplectic Geometry, in Proceedings of Ascona meeting, June, 1996, edited by
D.
Sternheimer
,
J.
Rawnsley
, and
S.
Gutt
(Kluwer Academic, Dordrecht,
1997
), Vol.
20
, pp.
259
270
.
129.
Schmidke
,
W.
,
Wess
,
J.
, and
Zumino
,
B.
, “
A q-deformed Lorentz algebra
,”
Z. Phys. C
52
,
471
476
(
1991
).
130.
Segal
,
I. E.
, “
A class of operator algebras which are determined by groups
,”
Duke Math. J.
18
,
221
265
(
1951
).
131.
Semenov-Tian-Shansky
,
M.
, “
Poisson Lie groups, quantum duality principle, and the quantum double
,” in Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups (South Hadley, MA,
1992
), Contemp. Math. (American Mathematical Society, Providence, RI,
1994
), Vol.
175
, pp.
219
248
.
132.
Stolin
,
A.
, “
On rational solutions of Yang-Baxter equation for sl(n)
,”
Math. Scand.
69
(1),
57
80
(
1991
).
133.
Sweedler
,
M. E.
, “
Cohomology of algebras over Hopf algebras
,”
Trans. Am. Math. Soc.
133
,
205
239
(
1968
).
134.
Sweedler
,
M.E.
, Hopf Algebras (Benjamin, New York,
1969
).
135.
Tamarkin
,
D.
, “
Another proof of M. Kontsevich formality theorem
,” math.QA/9803025.
136.
Tamarkin
,
D.
, “
A formalism for the renormalization procedure
,” math.QA/0312219.
137.
Teichmüller
,
O.
, “
Extremale quasikonforme Abbildungen und quadratische Differentiale
,”
Abh. Preuss. Akad. Wiss., Math.-Naturwiss. Kl.
22
,
1
97
(
1939
).
138.
Trèves
,
F.
, Topological Vector Spaces, Distributions and Kernels (Academic, New York, 1967), xvi+624 pp.
139.
Unterberger
,
A.
, “
Quantification et analyse pseudo-différentielle
,”
Ann. Sci. Ec. Normale Super.
21
,
133
158
(
1988
);
Unterberger
,
A.
, “
La série discrète de SL(2,R) et les opérateurs pseudo-différentiels sur une demidroite
,”
Ann. Sci. Ec. Normale Super.
17
,
83
116
(
1984
).
140.
Unterberger
,
A.
and
Upmeier
,
H.
, Pseudodifferential Analysis on Symmetric Cones, Studies in Advanced Mathematics (CRC Press, Boca Raton, FL,
1996
);
The Berezin transform and invariant differential operators
,”
Commun. Math. Phys.
164,
563
597
(
1994
).
141.
Weinstein
,
A.
, “
Traces and triangles in symmetric symplectic spaces
,” Symplectic Geometry and Quantization (Sanda and Yokohama, 1993),
Weinstein
,
A.
,
Contemp. Math.
179
,
261
270
(
1994
).
142.
Weyl
,
H.
, The Theory of Groups and Quantum Mechanics (Dover, New York,
1931
);
Gruppentheorie und Quantenmechanik, reprint of the 2nd ed. (Hirzel, Leipzig,
1931
) of the original 1927 text, xi+366 pp. Wissenschaftliche Buchgesellschaft, Darmstadt, 1977.
143.
Wigner
,
E. P.
, “
Quantum corrections for thermodynamic equilibrium
,”
Phys. Rev.
40
,
749
759
(
1932
).
This content is only available via PDF.
You do not currently have access to this content.