Using the holographic machinery built up in a previous work, we show that the hidden SL(2,R) symmetry of a scalar quantum field propagating in a Rindler space–time admits an enlargement in terms of a unitary positive-energy representation of Virasoro algebra defined in the Fock representation. That representation has central charge c=1. The Virasoro algebra of operators gets a manifest geometrical meaning if referring to the holographically associated quantum field theory on the horizon: It is nothing but a representation of the algebra of vector fields defined on the horizon equipped with a point at infinity. All that happens provided the Virasoro ground energy h≔μ2/2 vanishes and, in that case, the Rindler Hamiltonian is associated with a certain Virasoro generator. If a suitable regularization procedure is employed, for h=1/2, the ground state of that generator seems to correspond to a thermal state when examined in the Rindler wedge, taking the expectation value with respect to Rindler time. Finally, under Wick rotation in Rindler time, the pair of quantum field theories which are built up on the future and past horizon defines a proper two-dimensional conformal quantum field theory on a cylinder.

1.
G.
’t Hooft
, gr-qc/9310026 (
1993
).
2.
G.
’t Hooft
,
Int. J. Mod. Phys. A
11
,
4623
(
1996
).
3.
L.
Susskind
,
J. Math. Phys.
36
,
6377
(
1995
).
4.
J.
Maldacena
,
Adv. Theor. Math. Phys.
2
,
231
(
1998
).
5.
E.
Witten
,
Adv. Theor. Math. Phys.
2
,
253
(
1998
).
6.
K. H.
Rehren
,
Ann. Henri Poincare
1
,
607
(
2000
).
7.
K. H.
Rehren
,
Phys. Lett. B
493
,
383
(
2000
).
8.
V.
Moretti
and
N.
Pinamonti
,
J. Math. Phys.
45
,
230
(
22003
);
V.
Moretti
and
N.
Pinamonti
, hep-th/0304111.
9.
V.
Moretti
and
N.
Pinamonti
,
Nucl. Phys. B
647
,
131
(
2002
).
10.
B.
Schroer
, hep-th/0108203;
B.
Schroer
,
Int. J. Mod. Phys. A
18
,
1671
(
2003
);
B.
Schroer
,
J. Phys. A
35
,
9165
(
2002
).
11.
B.
Schroer
and
H.-W.
Wiesbrock
,
Rev. Math. Phys.
12
,
461
(
2000
).
12.
B.
Schroer
and
L.
Fassarella
,
J. Phys. A
35
,
9123
(
2002
).
13.
D.
Guido
,
R.
Longo
,
J. E.
Roberts
, and
R.
Verch
,
Rev. Math. Phys.
13
,
1203
(
2001
).
14.
J. D.
Brown
and
M.
Henneaux
,
Commun. Math. Phys.
104
,
207
(
1986
);
A.
Strominger
,
J. High Energy Phys.
9802
,
009
(
1998
).
15.
S.
Carlip
,
Phys. Rev. Lett.
82
,
2828
(
1999
);
S. N.
Solodukhin
,
Phys. Lett. B
454
,
213
(
1999
);
F.
Lin
and
Y.
Wu
,
Phys. Lett. B
453
,
222
(
1999
);
M.
Park
,
Nucl. Phys. B
634
,
339
(
2002
).
16.
A.
Giacomini
and
N.
Pinamonti
,
J. High Energy Phys.
0302
,
014
(
2003
).
17.
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1995).
18.
R. M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (Chicago University Press, Chicago, 1994).
19.
A. Pressley and G. Segal, Loop Groups (Clarendon, Oxford, 1986).
20.
V. G. Kac and A. K. Raina, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras (World Scientific, Singapore, 1987).
21.
V.
de Alfaro
,
S.
Fubini
, and
G.
Furlan
,
Nuovo Cimento Soc. Ital. Fis., A
34
,
569
(
1976
).
22.
R. Haag, Local Quantum Physics, 2nd ed. (Springer, Berlin, 1996).
This content is only available via PDF.
You do not currently have access to this content.