It is shown that it is possible to define quantum field theory of a massless scalar free field on the Killing horizon of a 2D Rindler space–time. Free quantum field theory on the horizon enjoys diffeomorphism invariance and turns out to be unitarily and algebraically equivalent to the analogous theory of a scalar field propagating inside Rindler space–time, no matter the value of the mass of the field in the bulk. More precisely, there exists a unitary transformation that realizes the bulk-boundary correspondence upon an appropriate choice for Fock representation spaces. Second, the found correspondence is a subcase of an analogous algebraic correspondence described by injective  * -homomorphisms of the abstract algebras of observables generated by abstract quantum free-field operators. These field operators are smeared with suitable test functions in the bulk and exact one-forms on the horizon. In this sense the correspondence is independent from the chosen vacua. It is proven that, under that correspondence, the “hidden” SL(2,ℝ) quantum symmetry found in a previous work gets a clear geometric meaning, it being associated with a group of diffeomorphisms of the horizon itself.

1.
V.
Moretti
and
N.
Pinamonti
,
Nucl. Phys. B
647
,
131
(
2002
).
2.
G.
’t Hooft
, “
Dimensional Reduction in Quantum Gravity
,” gr-qc/9310026.
3.
G.
’t Hooft
,
Int. J. Mod. Phys. A
11
,
4623
(
1996
).
4.
L.
Susskind
,
J. Math. Phys.
36
,
6377
(
1995
).
5.
J. D.
Brown
and
M.
Henneaux
,
Commun. Math. Phys.
104
,
207
(
1986
).
6.
J.
Maldacena
,
Adv. Theor. Math. Phys.
2
,
231
(
1998
).
7.
E.
Witten
,
Adv. Theor. Math. Phys.
2
,
253
(
1998
).
8.
S. S.
Gubser
,
I. R.
Klebanov
, and
A. M.
Polyakov
,
Phys. Lett. B
428
,
105
(
1998
).
9.
J. M.
Maldacena
,
J.
Michelson
, and
A.
Strominger
,
J. High Energy Phys.
9902
,
011
(
1999
).
10.
K. H.
Rehren
,
Ann. Henri Poincare
1
,
607
(
2000
).
11.
K. H.
Rehren
,
Phys. Lett. B
493
,
383
(
2000
).
12.
A.
Strominger
,
J. High Energy Phys.
0110
,
034
(
2001
).
13.
I.
Sachs
and
S. N.
Solodukhin
,
Phys. Rev. D
64
,
124023
(
2001
).
14.
V.
de Alfaro
,
S.
Fubini
, and
G.
Furlan
,
Nuovo Cimento Soc. Ital. Fis., A
34A
,
569
(
1976
).
15.
D.
Guido
,
R.
Longo
,
J. E.
Roberts
, and
R.
Verch
,
Rev. Math. Phys.
13
,
1203
(
2001
).
16.
B.
Schroer
and
H-W.
Wiesbrock
,
Rev. Math. Phys.
12
,
461
(
2000
).
17.
B.
Schroer
, “
Lightfront Formalism versus Holography & Chiral Scanning
,” hep-th/0108203.
18.
B.
Schroer
and
L.
Fassarella
, “
Wigner particle theory and Local Quantum Physics
,” hep-th/0106064.
19.
V.
Moretti
and
N.
Pinamonti
,
J. Math. Phys.
45
,
257
(
2004
).
20.
B. S.
Kay
and
R. M.
Wald
,
Phys. Rep.
207
,
49
(
1991
).
21.
R. M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (Chicago University Press, Chicago, 1994).
22.
S. A. Fulling, Aspects of Quantum Field Theory in Curved Spacetime (Cambridge University Press, Cambridge, 1989).
23.
N. N. Lebedev, Special Functions and their Applications (Dover New York, 1972).
24.
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1995).
25.
V.
Bargmann
,
Ann. Math.
48
,
568
(
1947
).
26.
P. J.
Sally
, Jr.
,
Bull. Am. Math. Soc.
72
,
269
(
1966
).
27.
L.
Pukansky
,
Math. Ann.
156
,
96
(
1964
).
28.
E.
Nelson
,
Ann. Math.
70
,
572
(
1959
).
29.
G. L.
Sewell
,
Ann. Phys. (N.Y.)
141
,
201
(
1982
).
30.
N. Jacobson, Basic Algebra II, 2nd ed. (Freeman, New York, 1989).
31.
N. I. Akhiezer, Lectures on Integral Transforms, Translations of Mathematical Monographs, Vol. 70 (American Mathematical Society, Providence, 1988).
This content is only available via PDF.
You do not currently have access to this content.