Reciprocal transformations of Hamiltonian operators of hydrodynamic type are investigated. The transformed operators are generally nonlocal, possessing a number of remarkable algebraic and differential-geometric properties. We apply our results to linearly degenerate semi-Hamiltonian systems in Riemann invariants, a typical example being Rti=(∑m=1nRm−Ri)Rxi, i=1,2,…,n. Since all such systems are linearizable by appropriate (generalized) reciprocal transformations, our formulas provide an infinity of mutually compatible nonlocal Hamiltonian structures, explicitly parametrized by n arbitrary functions of one variable.

1.
Alekseev
,
V. L.
, “
On nonlocal Hamiltonian operators of hydrodynamic type connected with Whitham’s equations
,”
Russ. Math. Surveys
50
,
1253
1255
(
1995
).
2.
Alekseev, V. L. and Pavlov, M. V., “Hamiltonian structures of the Whitham equations,” in Proceedings of the Conference on NLS, Chernogolovka, 1994.
3.
Arik
,
M.
, et al., “
Multi-Hamiltonian structure of the Born-Infeld equation
,”
J. Math. Phys.
30
,
1338
1344
(
1989
).
4.
Blaszak, M. and Ma, W. X., “Separable Hamiltonian equations on Riemann manifolds and related integrable hydrodynamic systems,” arX:nlin.SI/0209014, to appear in J. Geom. Phys.
5.
Bogdanov
,
L. V.
and
Ferapontov
,
E. V.
, “
A nonlocal Hamiltonian formalism for semi-Hamiltonian systems of hydrodynamic type
,”
Theor. Math. Phys.
116
,
829
835
(
1998
).
6.
Dubrovin
,
B. A.
, “
A periodic problem for the Korteweg-de Vries equation in a class of short-range potentials
,”
Funct. Anal. Appl.
9
,
41
51
(
1975
).
7.
Dubrovin
,
B. A.
, “
The inverse scattering problem for periodic short-range potentials
,”
Funct. Anal. Appl.
9
,
65
66
(
1975
).
8.
Dubrovin
,
B. A.
, “
Geometry of 2D topological field theories
,”
Lect. Notes Math.
1620
,
120
348
(
1996
).
9.
Dubrovin
,
B. A.
and
Novikov
,
S. P.
, “
Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov-Whitham averaging method
,”
Sov. Math. Dokl.
27
,
665
669
(
1983
).
10.
Dubrovin
,
B. A.
and
Novikov
,
S. P.
, “
Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory
,”
Russ. Math. Surveys
44
,
35
124
(
1989
).
11.
Ferapontov
,
E. V.
, “
Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications
,”
Am. Math. Soc. Trans.
170
,
33
58
(
1995
).
12.
Ferapontov
,
E. V.
, “
Integration of weakly nonlinear hydrodynamic systems in Riemann invariants
,”
Phys. Lett. A
158
,
112
118
(
1991
).
13.
Ferapontov
,
E. V.
, “
Conformally flat metrics, systems of hydrodynamic type and nonlocal Hamiltonian operators
,”
Usp. Mat. Nauk
4
,
175
176
(
1995
).
14.
Ferapontov
,
E. V.
, “
Integration of weakly nonlinear semi-Hamiltonian systems of hydrodynamic type by the methods of web theory
,”
Math. USSR-Sb.
71
,
65
79
(
1992
).
15.
Ferapontov
,
E. V.
and
Fordy
,
A. P.
, “
Separable Hamiltonians and integrable systems of hydrodynamic type
,”
J. Geom. Phys.
21
,
169
182
(
1997
).
16.
Ferapontov
,
E. V.
and
Fordy
,
A. P.
, “
Nonhomogeneous systems of hydrodynamic type related to quadratic Hamiltonians with electromagnetic term
,”
Physica D
108
,
350
364
(
1997
).
17.
Maltsev, A. Ya., “On the compatible weakly-nonlocal Poisson brackets of hydrodynamic type,” nlin.SI/0111015.
18.
Maltsev
,
A. Ya.
and
Novikov
,
S. P.
, “
On the local systems Hamiltonian in the weakly non-local Poisson brackets
,”
Physica D
156
,
53
80
(
2001
).
19.
Meshkov
,
A. G.
and
Mikhalyaev
,
B. B.
, “
Gas dynamics equations that admit an infinite number of symmetries
,”
Theor. Math. Phys.
72
,
163
171
(
1987
).
20.
Mokhov
,
O. I.
and
Ferapontov
,
E. V.
, “
Nonlocal Hamiltonian operators of hydrodynamic type associated with constant curvature metrics
,”
Usp. Mat. Nauk
45
,
191
192
(
1990
).
21.
Nutku
,
Y.
, “
On a new class of completely integrable nonlinear wave equations. Multi-Hamiltonian structure
,”
J. Math. Phys.
28
,
2579
2585
(
1987
).
22.
Olver
,
P.
and
Nutku
,
Y.
, “
Hamiltonian structures for systems of hyperbolic conservation laws
,”
J. Math. Phys.
29
,
1610
1619
(
1988
).
23.
Pavlov
,
M. V.
, “
Hamiltonian formalism of weakly nonlinear systems in hydrodynamics
,”
Teor. Mat. Fiz.
73
,
316
320
(
1987
) (in Russian).
24.
Pavlov
,
M. V.
, “
Preservation of the “form” of Hamiltonian structures under linear changes of the independent variables
,”
Math. Notes
57
,
489
495
(
1995
) (in Russian).
25.
Pavlov, M. V., “Integrable Systems and Metrics of Constant Curvature,” to appear in JNMP (2002).
26.
Rogers, V. and Shadwick, W. F., Bäcklund Transformations and their Applications (Academic, New York, 1982).
27.
Tsarev
,
S. P.
, “
On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type
,”
Sov. Math. Dokl.
31
,
488
491
(
1985
).
28.
Tsarev
,
S. P.
, “
The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method
,”
Math. USSR Izv.
37
,
397
419
(
1991
).
29.
Verosky
,
J. M.
, “
First-order conserved densities for gas dynamics
,”
J. Math. Phys.
27
,
3061
3063
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.