The problems connected with Gaudin models are reviewed by analyzing model related to the trigonometric osp(1|2) classical -matrix. The eigenvectors of the trigonometric osp(1|2) Gaudin Hamiltonians are found using explicitly constructed creation operators. The commutation relations between the creation operators and the generators of the trigonometric loop superalgebra are calculated. The coordinate representation of the Bethe states is presented. The relation between the Bethe vectors and solutions to the Knizhnik–Zamolodchikov equation yields the norm of the eigenvectors. The generalized Knizhnik–Zamolodchikov system is discussed both in the rational and in the trigonometric case.
REFERENCES
1.
L. D. Faddeev, “How algebraic Bethe Ansatz works for integrable models,” in Quantum symmetries/Symetries quantiques, Proceedings of the Les Houches summer school, Session LXIV, Les Houches, France 1 August–8 September 1995, edited by A. Connes, K. Gawedzki and J. Zinn-Justin (North-Holland, Amsterdam, 1998), pp. 149–219.
2.
P. P. Kulish and E. K. Sklyanin, “Quantum spectral transform method. Recent developments,” in Lecture Notes in Physics, edited by J. Hietarinta and C. Montonen (Springer, New York, 1982), Vol. 15b-pp. 61–119.
3.
V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1993).
4.
5.
M. Gaudin, La fonction d’onde de Bethe, (Masson, Paris, 1983), Chap. 13.
6.
7.
8.
9.
K.
Hikami
, P. P.
Kulish
, and M.
Wadati
, J. Phys. Soc. Jpn.
61
, 3071
(1992
).10.
11.
12.
B.
Feigin
, E.
Frenkel
, and N.
Reshetikhin
, Commun. Math. Phys.
166
, 27
(1994
).13.
N. Reshetikhin and A. Varchenko, “Quasiclassical asymptotics of solutions to the Knizhnik-Zamolodchikov equations,” in Geometry, topology and physics for Raoul Bott, edited by S.-T. Yau, Lect. Notes Geom. Topol. 4, 293 (1995).
14.
15.
16.
17.
18.
19.
20.
L.
Amico
, A.
Di Lorenzo
, and A.
Osterloh
, Phys. Rev. Lett.
86
, 5759
(2001
).21.
22.
23.
L. A.
Takhtajan
and L. D.
Faddeev
, Zap. Nauchn. Semin. LOMI
109
, 134
(1981
) (in Russian);24.
25.
26.
27.
V. O.
Tarasov
and A.
Varchenko
, Mathematics at St. Petersburg, AMS Transl. Ser. 2
174
, 235
(1996
).28.
29.
30.
31.
32.
33.
M.
Scheunert
, W.
Nahm
, and V.
Rittenberg
, J. Math. Phys.
18
, 155
(1977
).34.
35.
L. A. Takhtajan and L. D. Faddeev, Hamiltonian Methods in the Theory of Solitons (Springer, Berlin, 1987).
36.
37.
38.
39.
40.
41.
M. D.
Gould
, Y.-Z.
Zhang
, and S.-Y.
Zhao
, “Supersymmetric t-J Gaudin models and KZ equations
,” nlin.SI/0202046.42.
P. P. Kulish, “Twisted sl(2) Gaudin model,” preprint PDMI 08/2002.
43.
44.
V. G.
Knizhnik
and A. B.
Zamolodchikov
, Nucl. Phys. B
247
, 83
(1984
).45.
E. V.
Damaskinsky
, P. P.
Kulish
, and M. A.
Sokolov
, Zap. Nauchn. Semin. POMI
211
, 11
(1995
).46.
F. A.
Berezin
and V. N.
Tolstoy
, Commun. Math. Phys.
78
, 409
(1981
).
This content is only available via PDF.
© 2003 American Institute of Physics.
2003
American Institute of Physics
You do not currently have access to this content.