We discuss a systematic way to dimensionally regularize divergent sums arising in field theories with an arbitrary number of physical compact dimensions or finite temperature. The method preserves the same symmetries of the action as the conventional dimensional regularization and allows an easy separation of the regulated divergence from the finite term that depends on the compactification radius (temperature).

1.
G.
’t Hooft
and
M.
Veltman
,
Nucl. Phys. B
44
,
189
(
1972
);
C. G.
Bollini
and
J. J.
Giambiagi
,
Phys. Lett.
40B
,
566
(
1972
).
2.
K. G.
Wilson
,
Phys. Rev. D
7
,
2911
(
1973
).
3.
J. C. Collins, Renormalization (Cambridge University Press, Cambridge, 1985), Chap. 4.
4.
In finite-size scaling theory, see
E.
Brézin
and
J.
Zinn-Justin
,
Nucl. Phys. B
257
[FS14],
867
(
1985
);
J.
Rudnick
,
H.
Guo
, and
D.
Jasnow
,
J. Stat. Phys.
41
,
353
(
1985
);
Finite-Size Scaling, edited by J. L. Cardy (North-Holland, Amsterdam, 1988);
J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd ed. (Oxford University Press, New York, 1996), Chap. 36, in particular Appendix A36.2 and references therein;
see also
S.
Caracciolo
,
A.
Gambassi
,
M.
Gubinelli
, and
A.
Pelissetto
,
Eur. Phys. J. B
20
,
255
(
2001
).
5.
In finite temperature field theory, see
J.
Zinn-Justin
, hep-ph/0005272;
M. Le Bellac, Thermal Field Theory (Cambridge University Press, Cambridge, 1996);
M.
Quiros
, hep-ph/9901312;
see also Ref. 12.
6.
In theories with compact dimensions, see
T.
Appelquist
and
A.
Chodos
,
Phys. Rev. Lett.
50
,
141
(
1983
);
T.
Appelquist
and
A.
Chodos
,
Phys. Rev. D
28
,
772
(
1983
);
I.
Antoniadis
and
M.
Quiros
,
Nucl. Phys. B
505
,
109
(
1997
);
I.
Antoniadis
,
S.
Dimopoulos
,
A.
Pomarol
, and
M.
Quiros
,
Nucl. Phys. B
544
,
503
(
1999
).
7.
For reviews on the Casimir effect, see
E. M.
Santangelo
,
Theor. Math. Phys.
131
,
527
(
2002
) [Teor. Mat. Fiz. 131, 98 (2002)];
E. M.
Santangelo
, hep-th/0104025;
M.
Bordag
,
U.
Mohideen
, and
V. M.
Mostepanenko
,
Phys. Rep.
353
,
1
(
2001
).
8.
For ζ-function regularization, see
J. S.
Dowker
and
R.
Critchley
,
Phys. Rev. D
13
,
3224
(
1976
);
S. W.
Hawking
,
Commun. Math. Phys.
55
,
133
(
1977
);
E. Elizalde, in Leipzig 1992, Proceedings, Quantum Field Theory under the Influence of External Conditions;
Ten Physical Applications of Spectral Zeta Functions, Lecture Notes in Physics M 35, 1 (Springer, New York, 1995).
9.
O. M.
Ogreid
and
P.
Osland
,
J. Comput. Appl. Math.
140
,
659
(
2002
);
O. M.
Ogreid
and
P.
Osland
, math-ph/0010026.
10.
R.
Contino
,
L.
Pilo
,
R.
Rattazzi
, and
A.
Strumia
,
J. High Energy Phys.
6
,
005
(
2001
);
R.
Contino
,
L.
Pilo
,
R.
Rattazzi
, and
A.
Strumia
, hep-ph/0103104, Appendix D.
11.
S. Groot
Nibbelink
,
Nucl. Phys. B
619
,
373
(
2001
);
S. Groot
Nibbelink
, hep-th/0108185.
12.
D. J.
Bedingham
, hep-ph/0011012.
13.
R.
Barbieri
,
L.
Hall
, and
Y.
Nomura
,
Phys. Rev. D
63
,
105007
(
2001
).
14.
M.
Ghilencea
and
H. P.
Nilles
,
Phys. Lett. B
507
,
327
(
2001
).
15.
A.
Delgado
,
G.
von Gersdorff
,
P.
John
, and
M.
Quiros
,
Phys. Lett. B
517
,
445
(
2001
).
16.
R.
Contino
and
L.
Pilo
,
Phys. Lett. B
523
,
347
(
2001
).
17.
B. Davies, Integral Transform and Their Applications, Applied Mathematical Sciences 25 (Springer Verlag, Berlin, 1978).
18.
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed., edited by A. Jeffrey (Academic, New York, 1994).
19.
M.
Lüscher
and
P.
Weisz
,
Nucl. Phys. B
445
,
429
(
1995
).
20.
P.
Candelas
and
S.
Weinberg
,
Nucl. Phys. B
237
,
397
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.